239 lines
4.6 KiB
Go
239 lines
4.6 KiB
Go
|
package bn256
|
||
|
|
||
|
import (
|
||
|
"math/big"
|
||
|
)
|
||
|
|
||
|
// curvePoint implements the elliptic curve y²=x³+3. Points are kept in Jacobian
|
||
|
// form and t=z² when valid. G₁ is the set of points of this curve on GF(p).
|
||
|
type curvePoint struct {
|
||
|
x, y, z, t gfP
|
||
|
}
|
||
|
|
||
|
var curveB = newGFp(3)
|
||
|
|
||
|
// curveGen is the generator of G₁.
|
||
|
var curveGen = &curvePoint{
|
||
|
x: *newGFp(1),
|
||
|
y: *newGFp(2),
|
||
|
z: *newGFp(1),
|
||
|
t: *newGFp(1),
|
||
|
}
|
||
|
|
||
|
func (c *curvePoint) String() string {
|
||
|
c.MakeAffine()
|
||
|
x, y := &gfP{}, &gfP{}
|
||
|
montDecode(x, &c.x)
|
||
|
montDecode(y, &c.y)
|
||
|
return "(" + x.String() + ", " + y.String() + ")"
|
||
|
}
|
||
|
|
||
|
func (c *curvePoint) Set(a *curvePoint) {
|
||
|
c.x.Set(&a.x)
|
||
|
c.y.Set(&a.y)
|
||
|
c.z.Set(&a.z)
|
||
|
c.t.Set(&a.t)
|
||
|
}
|
||
|
|
||
|
// IsOnCurve returns true iff c is on the curve.
|
||
|
func (c *curvePoint) IsOnCurve() bool {
|
||
|
c.MakeAffine()
|
||
|
if c.IsInfinity() {
|
||
|
return true
|
||
|
}
|
||
|
|
||
|
y2, x3 := &gfP{}, &gfP{}
|
||
|
gfpMul(y2, &c.y, &c.y)
|
||
|
gfpMul(x3, &c.x, &c.x)
|
||
|
gfpMul(x3, x3, &c.x)
|
||
|
gfpAdd(x3, x3, curveB)
|
||
|
|
||
|
return *y2 == *x3
|
||
|
}
|
||
|
|
||
|
func (c *curvePoint) SetInfinity() {
|
||
|
c.x = gfP{0}
|
||
|
c.y = *newGFp(1)
|
||
|
c.z = gfP{0}
|
||
|
c.t = gfP{0}
|
||
|
}
|
||
|
|
||
|
func (c *curvePoint) IsInfinity() bool {
|
||
|
return c.z == gfP{0}
|
||
|
}
|
||
|
|
||
|
func (c *curvePoint) Add(a, b *curvePoint) {
|
||
|
if a.IsInfinity() {
|
||
|
c.Set(b)
|
||
|
return
|
||
|
}
|
||
|
if b.IsInfinity() {
|
||
|
c.Set(a)
|
||
|
return
|
||
|
}
|
||
|
|
||
|
// See http://hyperelliptic.org/EFD/g1p/auto-code/shortw/jacobian-0/addition/add-2007-bl.op3
|
||
|
|
||
|
// Normalize the points by replacing a = [x1:y1:z1] and b = [x2:y2:z2]
|
||
|
// by [u1:s1:z1·z2] and [u2:s2:z1·z2]
|
||
|
// where u1 = x1·z2², s1 = y1·z2³ and u1 = x2·z1², s2 = y2·z1³
|
||
|
z12, z22 := &gfP{}, &gfP{}
|
||
|
gfpMul(z12, &a.z, &a.z)
|
||
|
gfpMul(z22, &b.z, &b.z)
|
||
|
|
||
|
u1, u2 := &gfP{}, &gfP{}
|
||
|
gfpMul(u1, &a.x, z22)
|
||
|
gfpMul(u2, &b.x, z12)
|
||
|
|
||
|
t, s1 := &gfP{}, &gfP{}
|
||
|
gfpMul(t, &b.z, z22)
|
||
|
gfpMul(s1, &a.y, t)
|
||
|
|
||
|
s2 := &gfP{}
|
||
|
gfpMul(t, &a.z, z12)
|
||
|
gfpMul(s2, &b.y, t)
|
||
|
|
||
|
// Compute x = (2h)²(s²-u1-u2)
|
||
|
// where s = (s2-s1)/(u2-u1) is the slope of the line through
|
||
|
// (u1,s1) and (u2,s2). The extra factor 2h = 2(u2-u1) comes from the value of z below.
|
||
|
// This is also:
|
||
|
// 4(s2-s1)² - 4h²(u1+u2) = 4(s2-s1)² - 4h³ - 4h²(2u1)
|
||
|
// = r² - j - 2v
|
||
|
// with the notations below.
|
||
|
h := &gfP{}
|
||
|
gfpSub(h, u2, u1)
|
||
|
xEqual := *h == gfP{0}
|
||
|
|
||
|
gfpAdd(t, h, h)
|
||
|
// i = 4h²
|
||
|
i := &gfP{}
|
||
|
gfpMul(i, t, t)
|
||
|
// j = 4h³
|
||
|
j := &gfP{}
|
||
|
gfpMul(j, h, i)
|
||
|
|
||
|
gfpSub(t, s2, s1)
|
||
|
yEqual := *t == gfP{0}
|
||
|
if xEqual && yEqual {
|
||
|
c.Double(a)
|
||
|
return
|
||
|
}
|
||
|
r := &gfP{}
|
||
|
gfpAdd(r, t, t)
|
||
|
|
||
|
v := &gfP{}
|
||
|
gfpMul(v, u1, i)
|
||
|
|
||
|
// t4 = 4(s2-s1)²
|
||
|
t4, t6 := &gfP{}, &gfP{}
|
||
|
gfpMul(t4, r, r)
|
||
|
gfpAdd(t, v, v)
|
||
|
gfpSub(t6, t4, j)
|
||
|
|
||
|
gfpSub(&c.x, t6, t)
|
||
|
|
||
|
// Set y = -(2h)³(s1 + s*(x/4h²-u1))
|
||
|
// This is also
|
||
|
// y = - 2·s1·j - (s2-s1)(2x - 2i·u1) = r(v-x) - 2·s1·j
|
||
|
gfpSub(t, v, &c.x) // t7
|
||
|
gfpMul(t4, s1, j) // t8
|
||
|
gfpAdd(t6, t4, t4) // t9
|
||
|
gfpMul(t4, r, t) // t10
|
||
|
gfpSub(&c.y, t4, t6)
|
||
|
|
||
|
// Set z = 2(u2-u1)·z1·z2 = 2h·z1·z2
|
||
|
gfpAdd(t, &a.z, &b.z) // t11
|
||
|
gfpMul(t4, t, t) // t12
|
||
|
gfpSub(t, t4, z12) // t13
|
||
|
gfpSub(t4, t, z22) // t14
|
||
|
gfpMul(&c.z, t4, h)
|
||
|
}
|
||
|
|
||
|
func (c *curvePoint) Double(a *curvePoint) {
|
||
|
// See http://hyperelliptic.org/EFD/g1p/auto-code/shortw/jacobian-0/doubling/dbl-2009-l.op3
|
||
|
A, B, C := &gfP{}, &gfP{}, &gfP{}
|
||
|
gfpMul(A, &a.x, &a.x)
|
||
|
gfpMul(B, &a.y, &a.y)
|
||
|
gfpMul(C, B, B)
|
||
|
|
||
|
t, t2 := &gfP{}, &gfP{}
|
||
|
gfpAdd(t, &a.x, B)
|
||
|
gfpMul(t2, t, t)
|
||
|
gfpSub(t, t2, A)
|
||
|
gfpSub(t2, t, C)
|
||
|
|
||
|
d, e, f := &gfP{}, &gfP{}, &gfP{}
|
||
|
gfpAdd(d, t2, t2)
|
||
|
gfpAdd(t, A, A)
|
||
|
gfpAdd(e, t, A)
|
||
|
gfpMul(f, e, e)
|
||
|
|
||
|
gfpAdd(t, d, d)
|
||
|
gfpSub(&c.x, f, t)
|
||
|
|
||
|
gfpMul(&c.z, &a.y, &a.z)
|
||
|
gfpAdd(&c.z, &c.z, &c.z)
|
||
|
|
||
|
gfpAdd(t, C, C)
|
||
|
gfpAdd(t2, t, t)
|
||
|
gfpAdd(t, t2, t2)
|
||
|
gfpSub(&c.y, d, &c.x)
|
||
|
gfpMul(t2, e, &c.y)
|
||
|
gfpSub(&c.y, t2, t)
|
||
|
}
|
||
|
|
||
|
func (c *curvePoint) Mul(a *curvePoint, scalar *big.Int) {
|
||
|
precomp := [1 << 2]*curvePoint{nil, {}, {}, {}}
|
||
|
precomp[1].Set(a)
|
||
|
precomp[2].Set(a)
|
||
|
gfpMul(&precomp[2].x, &precomp[2].x, xiTo2PSquaredMinus2Over3)
|
||
|
precomp[3].Add(precomp[1], precomp[2])
|
||
|
|
||
|
multiScalar := curveLattice.Multi(scalar)
|
||
|
|
||
|
sum := &curvePoint{}
|
||
|
sum.SetInfinity()
|
||
|
t := &curvePoint{}
|
||
|
|
||
|
for i := len(multiScalar) - 1; i >= 0; i-- {
|
||
|
t.Double(sum)
|
||
|
if multiScalar[i] == 0 {
|
||
|
sum.Set(t)
|
||
|
} else {
|
||
|
sum.Add(t, precomp[multiScalar[i]])
|
||
|
}
|
||
|
}
|
||
|
c.Set(sum)
|
||
|
}
|
||
|
|
||
|
func (c *curvePoint) MakeAffine() {
|
||
|
if c.z == *newGFp(1) {
|
||
|
return
|
||
|
} else if c.z == *newGFp(0) {
|
||
|
c.x = gfP{0}
|
||
|
c.y = *newGFp(1)
|
||
|
c.t = gfP{0}
|
||
|
return
|
||
|
}
|
||
|
|
||
|
zInv := &gfP{}
|
||
|
zInv.Invert(&c.z)
|
||
|
|
||
|
t, zInv2 := &gfP{}, &gfP{}
|
||
|
gfpMul(t, &c.y, zInv)
|
||
|
gfpMul(zInv2, zInv, zInv)
|
||
|
|
||
|
gfpMul(&c.x, &c.x, zInv2)
|
||
|
gfpMul(&c.y, t, zInv2)
|
||
|
|
||
|
c.z = *newGFp(1)
|
||
|
c.t = *newGFp(1)
|
||
|
}
|
||
|
|
||
|
func (c *curvePoint) Neg(a *curvePoint) {
|
||
|
c.x.Set(&a.x)
|
||
|
gfpNeg(&c.y, &a.y)
|
||
|
c.z.Set(&a.z)
|
||
|
c.t = gfP{0}
|
||
|
}
|