298 lines
9.1 KiB
Go
298 lines
9.1 KiB
Go
|
// Copyright 2017-2021 DERO Project. All rights reserved.
|
||
|
// Use of this source code in any form is governed by RESEARCH license.
|
||
|
// license can be found in the LICENSE file.
|
||
|
// GPG: 0F39 E425 8C65 3947 702A 8234 08B2 0360 A03A 9DE8
|
||
|
//
|
||
|
//
|
||
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
|
||
|
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
|
||
|
// MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
|
||
|
// THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
||
|
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
||
|
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
||
|
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
|
||
|
// THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||
|
|
||
|
package crypto
|
||
|
|
||
|
//import "fmt"
|
||
|
import "math/big"
|
||
|
|
||
|
//import "crypto/rand"
|
||
|
//import "encoding/hex"
|
||
|
|
||
|
import "github.com/deroproject/derohe/cryptography/bn256"
|
||
|
|
||
|
type FieldVectorPolynomial struct {
|
||
|
coefficients []*FieldVector
|
||
|
}
|
||
|
|
||
|
func NewFieldVectorPolynomial(inputs ...*FieldVector) *FieldVectorPolynomial {
|
||
|
fv := &FieldVectorPolynomial{}
|
||
|
for _, input := range inputs {
|
||
|
fv.coefficients = append(fv.coefficients, input.Clone())
|
||
|
}
|
||
|
return fv
|
||
|
}
|
||
|
|
||
|
func (fv *FieldVectorPolynomial) Length() int {
|
||
|
return len(fv.coefficients)
|
||
|
}
|
||
|
|
||
|
func (fv *FieldVectorPolynomial) Evaluate(x *big.Int) *FieldVector {
|
||
|
|
||
|
result := fv.coefficients[0].Clone()
|
||
|
|
||
|
accumulator := new(big.Int).Set(x)
|
||
|
|
||
|
for i := 1; i < len(fv.coefficients); i++ {
|
||
|
result = result.Add(fv.coefficients[i].Times(accumulator))
|
||
|
accumulator.Mul(accumulator, x)
|
||
|
accumulator.Mod(accumulator, bn256.Order)
|
||
|
|
||
|
}
|
||
|
return result
|
||
|
}
|
||
|
|
||
|
func (fv *FieldVectorPolynomial) InnerProduct(other *FieldVectorPolynomial) []*big.Int {
|
||
|
|
||
|
var result []*big.Int
|
||
|
|
||
|
result_length := fv.Length() + other.Length() - 1
|
||
|
for i := 0; i < result_length; i++ {
|
||
|
result = append(result, new(big.Int)) // 0 value fill
|
||
|
}
|
||
|
|
||
|
for i := range fv.coefficients {
|
||
|
for j := range other.coefficients {
|
||
|
tmp := new(big.Int).Set(result[i+j])
|
||
|
result[i+j].Add(tmp, fv.coefficients[i].InnerProduct(other.coefficients[j]))
|
||
|
result[i+j].Mod(result[i+j], bn256.Order)
|
||
|
}
|
||
|
}
|
||
|
return result
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
|
||
|
type PedersenCommitment struct {
|
||
|
X *big.Int
|
||
|
R *big.Int
|
||
|
Params *GeneratorParams
|
||
|
}
|
||
|
|
||
|
func NewPedersenCommitment(params *GeneratorParams, x, r *big.Int) *PedersenCommitment {
|
||
|
pc := &PedersenCommitment{Params: params, X: new(big.Int).Set(x), R: new(big.Int).Set(r)}
|
||
|
return pc
|
||
|
}
|
||
|
func (pc *PedersenCommitment) Commit() *bn256.G1 {
|
||
|
var left, right, result bn256.G1
|
||
|
left.ScalarMult(pc.Params.G, pc.X)
|
||
|
right.ScalarMult(pc.Params.H, pc.R)
|
||
|
result.Add(&left, &right)
|
||
|
return &result
|
||
|
}
|
||
|
func (pc *PedersenCommitment) Add(other *PedersenCommitment) *PedersenCommitment {
|
||
|
var x, r big.Int
|
||
|
x.Mod(new(big.Int).Add(pc.X, other.X), bn256.Order)
|
||
|
r.Mod(new(big.Int).Add(pc.R, other.R), bn256.Order)
|
||
|
return NewPedersenCommitment(pc.Params, &x, &r)
|
||
|
}
|
||
|
func (pc *PedersenCommitment) Times(constant *big.Int) *PedersenCommitment {
|
||
|
var x, r big.Int
|
||
|
x.Mod(new(big.Int).Mul(pc.X, constant), bn256.Order)
|
||
|
r.Mod(new(big.Int).Mul(pc.R, constant), bn256.Order)
|
||
|
return NewPedersenCommitment(pc.Params, &x, &r)
|
||
|
}
|
||
|
|
||
|
type PolyCommitment struct {
|
||
|
coefficient_commitments []*PedersenCommitment
|
||
|
Params *GeneratorParams
|
||
|
}
|
||
|
|
||
|
func NewPolyCommitment(params *GeneratorParams, coefficients []*big.Int) *PolyCommitment {
|
||
|
pc := &PolyCommitment{Params: params}
|
||
|
pc.coefficient_commitments = append(pc.coefficient_commitments, NewPedersenCommitment(params, coefficients[0], new(big.Int).SetUint64(0)))
|
||
|
|
||
|
for i := 1; i < len(coefficients); i++ {
|
||
|
pc.coefficient_commitments = append(pc.coefficient_commitments, NewPedersenCommitment(params, coefficients[i], RandomScalarFixed()))
|
||
|
|
||
|
}
|
||
|
return pc
|
||
|
}
|
||
|
|
||
|
func (pc *PolyCommitment) GetCommitments() []*bn256.G1 {
|
||
|
var result []*bn256.G1
|
||
|
for i := 1; i < len(pc.coefficient_commitments); i++ {
|
||
|
result = append(result, pc.coefficient_commitments[i].Commit())
|
||
|
}
|
||
|
return result
|
||
|
}
|
||
|
|
||
|
func (pc *PolyCommitment) Evaluate(constant *big.Int) *PedersenCommitment {
|
||
|
result := pc.coefficient_commitments[0]
|
||
|
|
||
|
accumulator := new(big.Int).Set(constant)
|
||
|
|
||
|
for i := 1; i < len(pc.coefficient_commitments); i++ {
|
||
|
|
||
|
tmp := new(big.Int).Set(accumulator)
|
||
|
result = result.Add(pc.coefficient_commitments[i].Times(accumulator))
|
||
|
accumulator.Mod(new(big.Int).Mul(tmp, constant), bn256.Order)
|
||
|
}
|
||
|
|
||
|
return result
|
||
|
}
|
||
|
*/
|
||
|
|
||
|
/*
|
||
|
// bother FieldVector and GeneratorVector satisfy this
|
||
|
type Vector interface{
|
||
|
Length() int
|
||
|
Extract(parity bool) Vector
|
||
|
Add(other Vector)Vector
|
||
|
Hadamard( []*big.Int) Vector
|
||
|
Times (*big.Int) Vector
|
||
|
Negate() Vector
|
||
|
}
|
||
|
*/
|
||
|
|
||
|
// check this https://pdfs.semanticscholar.org/d38d/e48ee4127205a0f25d61980c8f241718b66e.pdf
|
||
|
// https://arxiv.org/pdf/1802.03932.pdf
|
||
|
|
||
|
var unity *big.Int
|
||
|
|
||
|
func init() {
|
||
|
// primitive 2^28th root of unity modulo q
|
||
|
unity, _ = new(big.Int).SetString("14a3074b02521e3b1ed9852e5028452693e87be4e910500c7ba9bbddb2f46edd", 16)
|
||
|
|
||
|
}
|
||
|
|
||
|
func fft_FieldVector(input *FieldVector, inverse bool) *FieldVector {
|
||
|
length := input.Length()
|
||
|
if length == 1 {
|
||
|
return input
|
||
|
}
|
||
|
|
||
|
// lngth must be multiple of 2 ToDO
|
||
|
if length%2 != 0 {
|
||
|
panic("length must be multiple of 2")
|
||
|
}
|
||
|
|
||
|
//unity,_ := new(big.Int).SetString("14a3074b02521e3b1ed9852e5028452693e87be4e910500c7ba9bbddb2f46edd",16)
|
||
|
|
||
|
omega := new(big.Int).Exp(unity, new(big.Int).SetUint64((1<<28)/uint64(length)), bn256.Order)
|
||
|
if inverse {
|
||
|
omega = new(big.Int).ModInverse(omega, bn256.Order)
|
||
|
}
|
||
|
|
||
|
even := fft_FieldVector(input.Extract(false), inverse)
|
||
|
odd := fft_FieldVector(input.Extract(true), inverse)
|
||
|
|
||
|
omegas := []*big.Int{new(big.Int).SetUint64(1)}
|
||
|
|
||
|
for i := 1; i < length/2; i++ {
|
||
|
omegas = append(omegas, new(big.Int).Mod(new(big.Int).Mul(omegas[i-1], omega), bn256.Order))
|
||
|
}
|
||
|
|
||
|
omegasv := NewFieldVector(omegas)
|
||
|
result := even.Add(odd.Hadamard(omegasv)).Concat(even.Add(odd.Hadamard(omegasv).Negate()))
|
||
|
if inverse {
|
||
|
result = result.Times(new(big.Int).ModInverse(new(big.Int).SetUint64(2), bn256.Order))
|
||
|
}
|
||
|
|
||
|
return result
|
||
|
|
||
|
}
|
||
|
|
||
|
// this is exactly same as fft_FieldVector, alternate implementation
|
||
|
func fftints(input []*big.Int) (result []*big.Int) {
|
||
|
size := len(input)
|
||
|
if size == 1 {
|
||
|
return input
|
||
|
}
|
||
|
//require(size % 2 == 0, "Input size is not a power of 2!");
|
||
|
|
||
|
unity, _ := new(big.Int).SetString("14a3074b02521e3b1ed9852e5028452693e87be4e910500c7ba9bbddb2f46edd", 16)
|
||
|
|
||
|
omega := new(big.Int).Exp(unity, new(big.Int).SetUint64((1<<28)/uint64(size)), bn256.Order)
|
||
|
|
||
|
even := fftints(extractbits(input, 0))
|
||
|
odd := fftints(extractbits(input, 1))
|
||
|
omega_run := new(big.Int).SetUint64(1)
|
||
|
result = make([]*big.Int, len(input), len(input))
|
||
|
for i := 0; i < len(input)/2; i++ {
|
||
|
temp := new(big.Int).Mod(new(big.Int).Mul(odd[i], omega_run), bn256.Order)
|
||
|
result[i] = new(big.Int).Mod(new(big.Int).Add(even[i], temp), bn256.Order)
|
||
|
result[i+size/2] = new(big.Int).Mod(new(big.Int).Sub(even[i], temp), bn256.Order)
|
||
|
omega_run = new(big.Int).Mod(new(big.Int).Mul(omega, omega_run), bn256.Order)
|
||
|
}
|
||
|
return result
|
||
|
}
|
||
|
|
||
|
func extractbits(input []*big.Int, parity int) (result []*big.Int) {
|
||
|
result = make([]*big.Int, len(input)/2, len(input)/2)
|
||
|
for i := 0; i < len(input)/2; i++ {
|
||
|
result[i] = new(big.Int).Set(input[2*i+parity])
|
||
|
}
|
||
|
return
|
||
|
}
|
||
|
|
||
|
func fft_GeneratorVector(input *PointVector, inverse bool) *PointVector {
|
||
|
length := input.Length()
|
||
|
if length == 1 {
|
||
|
return input
|
||
|
}
|
||
|
|
||
|
// lngth must be multiple of 2 ToDO
|
||
|
if length%2 != 0 {
|
||
|
panic("length must be multiple of 2")
|
||
|
}
|
||
|
|
||
|
// unity,_ := new(big.Int).SetString("14a3074b02521e3b1ed9852e5028452693e87be4e910500c7ba9bbddb2f46edd",16)
|
||
|
|
||
|
omega := new(big.Int).Exp(unity, new(big.Int).SetUint64((1<<28)/uint64(length)), bn256.Order)
|
||
|
if inverse {
|
||
|
omega = new(big.Int).ModInverse(omega, bn256.Order)
|
||
|
}
|
||
|
|
||
|
even := fft_GeneratorVector(input.Extract(false), inverse)
|
||
|
|
||
|
//fmt.Printf("exponent_fft %d %s \n",i, exponent_fft.vector[i].Text(16))
|
||
|
|
||
|
odd := fft_GeneratorVector(input.Extract(true), inverse)
|
||
|
|
||
|
omegas := []*big.Int{new(big.Int).SetUint64(1)}
|
||
|
|
||
|
for i := 1; i < length/2; i++ {
|
||
|
omegas = append(omegas, new(big.Int).Mod(new(big.Int).Mul(omegas[i-1], omega), bn256.Order))
|
||
|
}
|
||
|
|
||
|
omegasv := omegas
|
||
|
result := even.Add(odd.Hadamard(omegasv)).Concat(even.Add(odd.Hadamard(omegasv).Negate()))
|
||
|
if inverse {
|
||
|
result = result.Times(new(big.Int).ModInverse(new(big.Int).SetUint64(2), bn256.Order))
|
||
|
}
|
||
|
|
||
|
return result
|
||
|
|
||
|
}
|
||
|
|
||
|
func Convolution(exponent *FieldVector, base *PointVector) *PointVector {
|
||
|
size := base.Length()
|
||
|
|
||
|
exponent_fft := fft_FieldVector(exponent.Flip(), false)
|
||
|
|
||
|
/*exponent_fft2 := fftints( exponent.Flip().vector) // aternate implementation proof checking
|
||
|
for i := range exponent_fft.vector{
|
||
|
fmt.Printf("exponent_fft %d %s \n",i, exponent_fft.vector[i].Text(16))
|
||
|
fmt.Printf("exponent_ff2 %d %s \n",i, exponent_fft2[i].Text(16))
|
||
|
}
|
||
|
*/
|
||
|
|
||
|
temp := fft_GeneratorVector(base, false).Hadamard(exponent_fft.vector)
|
||
|
return fft_GeneratorVector(temp.Slice(0, size/2).Add(temp.Slice(size/2, size)).Times(new(big.Int).ModInverse(new(big.Int).SetUint64(2), bn256.Order)), true)
|
||
|
// using the optimization described here https://dsp.stackexchange.com/a/30699
|
||
|
}
|