216 lines
5.0 KiB
Go
Raw Permalink Normal View History

2021-12-04 16:42:11 +00:00
package quantile
import (
"math"
"math/rand"
"sort"
"testing"
)
var (
Targets = map[float64]float64{
0.01: 0.001,
0.10: 0.01,
0.50: 0.05,
0.90: 0.01,
0.99: 0.001,
}
TargetsSmallEpsilon = map[float64]float64{
0.01: 0.0001,
0.10: 0.001,
0.50: 0.005,
0.90: 0.001,
0.99: 0.0001,
}
LowQuantiles = []float64{0.01, 0.1, 0.5}
HighQuantiles = []float64{0.99, 0.9, 0.5}
)
const RelativeEpsilon = 0.01
func verifyPercsWithAbsoluteEpsilon(t *testing.T, a []float64, s *Stream) {
sort.Float64s(a)
for quantile, epsilon := range Targets {
n := float64(len(a))
k := int(quantile * n)
if k < 1 {
k = 1
}
lower := int((quantile - epsilon) * n)
if lower < 1 {
lower = 1
}
upper := int(math.Ceil((quantile + epsilon) * n))
if upper > len(a) {
upper = len(a)
}
w, min, max := a[k-1], a[lower-1], a[upper-1]
if g := s.Query(quantile); g < min || g > max {
t.Errorf("q=%f: want %v [%f,%f], got %v", quantile, w, min, max, g)
}
}
}
func verifyLowPercsWithRelativeEpsilon(t *testing.T, a []float64, s *Stream) {
sort.Float64s(a)
for _, qu := range LowQuantiles {
n := float64(len(a))
k := int(qu * n)
lowerRank := int((1 - RelativeEpsilon) * qu * n)
upperRank := int(math.Ceil((1 + RelativeEpsilon) * qu * n))
w, min, max := a[k-1], a[lowerRank-1], a[upperRank-1]
if g := s.Query(qu); g < min || g > max {
t.Errorf("q=%f: want %v [%f,%f], got %v", qu, w, min, max, g)
}
}
}
func verifyHighPercsWithRelativeEpsilon(t *testing.T, a []float64, s *Stream) {
sort.Float64s(a)
for _, qu := range HighQuantiles {
n := float64(len(a))
k := int(qu * n)
lowerRank := int((1 - (1+RelativeEpsilon)*(1-qu)) * n)
upperRank := int(math.Ceil((1 - (1-RelativeEpsilon)*(1-qu)) * n))
w, min, max := a[k-1], a[lowerRank-1], a[upperRank-1]
if g := s.Query(qu); g < min || g > max {
t.Errorf("q=%f: want %v [%f,%f], got %v", qu, w, min, max, g)
}
}
}
func populateStream(s *Stream) []float64 {
a := make([]float64, 0, 1e5+100)
for i := 0; i < cap(a); i++ {
v := rand.NormFloat64()
// Add 5% asymmetric outliers.
if i%20 == 0 {
v = v*v + 1
}
s.Insert(v)
a = append(a, v)
}
return a
}
func TestTargetedQuery(t *testing.T) {
rand.Seed(42)
s := NewTargeted(Targets)
a := populateStream(s)
verifyPercsWithAbsoluteEpsilon(t, a, s)
}
func TestTargetedQuerySmallSampleSize(t *testing.T) {
rand.Seed(42)
s := NewTargeted(TargetsSmallEpsilon)
a := []float64{1, 2, 3, 4, 5}
for _, v := range a {
s.Insert(v)
}
verifyPercsWithAbsoluteEpsilon(t, a, s)
// If not yet flushed, results should be precise:
if !s.flushed() {
for φ, want := range map[float64]float64{
0.01: 1,
0.10: 1,
0.50: 3,
0.90: 5,
0.99: 5,
} {
if got := s.Query(φ); got != want {
t.Errorf("want %f for φ=%f, got %f", want, φ, got)
}
}
}
}
func TestLowBiasedQuery(t *testing.T) {
rand.Seed(42)
s := NewLowBiased(RelativeEpsilon)
a := populateStream(s)
verifyLowPercsWithRelativeEpsilon(t, a, s)
}
func TestHighBiasedQuery(t *testing.T) {
rand.Seed(42)
s := NewHighBiased(RelativeEpsilon)
a := populateStream(s)
verifyHighPercsWithRelativeEpsilon(t, a, s)
}
// BrokenTestTargetedMerge is broken, see Merge doc comment.
func BrokenTestTargetedMerge(t *testing.T) {
rand.Seed(42)
s1 := NewTargeted(Targets)
s2 := NewTargeted(Targets)
a := populateStream(s1)
a = append(a, populateStream(s2)...)
s1.Merge(s2.Samples())
verifyPercsWithAbsoluteEpsilon(t, a, s1)
}
// BrokenTestLowBiasedMerge is broken, see Merge doc comment.
func BrokenTestLowBiasedMerge(t *testing.T) {
rand.Seed(42)
s1 := NewLowBiased(RelativeEpsilon)
s2 := NewLowBiased(RelativeEpsilon)
a := populateStream(s1)
a = append(a, populateStream(s2)...)
s1.Merge(s2.Samples())
verifyLowPercsWithRelativeEpsilon(t, a, s2)
}
// BrokenTestHighBiasedMerge is broken, see Merge doc comment.
func BrokenTestHighBiasedMerge(t *testing.T) {
rand.Seed(42)
s1 := NewHighBiased(RelativeEpsilon)
s2 := NewHighBiased(RelativeEpsilon)
a := populateStream(s1)
a = append(a, populateStream(s2)...)
s1.Merge(s2.Samples())
verifyHighPercsWithRelativeEpsilon(t, a, s2)
}
func TestUncompressed(t *testing.T) {
q := NewTargeted(Targets)
for i := 100; i > 0; i-- {
q.Insert(float64(i))
}
if g := q.Count(); g != 100 {
t.Errorf("want count 100, got %d", g)
}
// Before compression, Query should have 100% accuracy.
for quantile := range Targets {
w := quantile * 100
if g := q.Query(quantile); g != w {
t.Errorf("want %f, got %f", w, g)
}
}
}
func TestUncompressedSamples(t *testing.T) {
q := NewTargeted(map[float64]float64{0.99: 0.001})
for i := 1; i <= 100; i++ {
q.Insert(float64(i))
}
if g := q.Samples().Len(); g != 100 {
t.Errorf("want count 100, got %d", g)
}
}
func TestUncompressedOne(t *testing.T) {
q := NewTargeted(map[float64]float64{0.99: 0.01})
q.Insert(3.14)
if g := q.Query(0.90); g != 3.14 {
t.Error("want PI, got", g)
}
}
func TestDefaults(t *testing.T) {
if g := NewTargeted(map[float64]float64{0.99: 0.001}).Query(0.99); g != 0 {
t.Errorf("want 0, got %f", g)
}
}