1326 lines
38 KiB
Go
Raw Normal View History

// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package pointer
// This file defines the constraint generation phase.
// TODO(adonovan): move the constraint definitions and the store() etc
// functions which add them (and are also used by the solver) into a
// new file, constraints.go.
import (
"fmt"
"go/token"
"go/types"
"golang.org/x/tools/go/callgraph"
"golang.org/x/tools/go/ssa"
)
var (
tEface = types.NewInterface(nil, nil).Complete()
tInvalid = types.Typ[types.Invalid]
tUnsafePtr = types.Typ[types.UnsafePointer]
)
// ---------- Node creation ----------
// nextNode returns the index of the next unused node.
func (a *analysis) nextNode() nodeid {
return nodeid(len(a.nodes))
}
// addNodes creates nodes for all scalar elements in type typ, and
// returns the id of the first one, or zero if the type was
// analytically uninteresting.
//
// comment explains the origin of the nodes, as a debugging aid.
//
func (a *analysis) addNodes(typ types.Type, comment string) nodeid {
id := a.nextNode()
for _, fi := range a.flatten(typ) {
a.addOneNode(fi.typ, comment, fi)
}
if id == a.nextNode() {
return 0 // type contained no pointers
}
return id
}
// addOneNode creates a single node with type typ, and returns its id.
//
// typ should generally be scalar (except for tagged.T nodes
// and struct/array identity nodes). Use addNodes for non-scalar types.
//
// comment explains the origin of the nodes, as a debugging aid.
// subelement indicates the subelement, e.g. ".a.b[*].c".
//
func (a *analysis) addOneNode(typ types.Type, comment string, subelement *fieldInfo) nodeid {
id := a.nextNode()
a.nodes = append(a.nodes, &node{typ: typ, subelement: subelement, solve: new(solverState)})
if a.log != nil {
fmt.Fprintf(a.log, "\tcreate n%d %s for %s%s\n",
id, typ, comment, subelement.path())
}
return id
}
// setValueNode associates node id with the value v.
// cgn identifies the context iff v is a local variable.
//
func (a *analysis) setValueNode(v ssa.Value, id nodeid, cgn *cgnode) {
if cgn != nil {
a.localval[v] = id
} else {
a.globalval[v] = id
}
if a.log != nil {
fmt.Fprintf(a.log, "\tval[%s] = n%d (%T)\n", v.Name(), id, v)
}
// Due to context-sensitivity, we may encounter the same Value
// in many contexts. We merge them to a canonical node, since
// that's what all clients want.
// Record the (v, id) relation if the client has queried pts(v).
if _, ok := a.config.Queries[v]; ok {
t := v.Type()
ptr, ok := a.result.Queries[v]
if !ok {
// First time? Create the canonical query node.
ptr = Pointer{a, a.addNodes(t, "query")}
a.result.Queries[v] = ptr
}
a.result.Queries[v] = ptr
a.copy(ptr.n, id, a.sizeof(t))
}
// Record the (*v, id) relation if the client has queried pts(*v).
if _, ok := a.config.IndirectQueries[v]; ok {
t := v.Type()
ptr, ok := a.result.IndirectQueries[v]
if !ok {
// First time? Create the canonical indirect query node.
ptr = Pointer{a, a.addNodes(v.Type(), "query.indirect")}
a.result.IndirectQueries[v] = ptr
}
a.genLoad(cgn, ptr.n, v, 0, a.sizeof(t))
}
for _, query := range a.config.extendedQueries[v] {
t, nid := a.evalExtendedQuery(v.Type().Underlying(), id, query.ops)
if query.ptr.a == nil {
query.ptr.a = a
query.ptr.n = a.addNodes(t, "query.extended")
}
a.copy(query.ptr.n, nid, a.sizeof(t))
}
}
// endObject marks the end of a sequence of calls to addNodes denoting
// a single object allocation.
//
// obj is the start node of the object, from a prior call to nextNode.
// Its size, flags and optional data will be updated.
//
func (a *analysis) endObject(obj nodeid, cgn *cgnode, data interface{}) *object {
// Ensure object is non-empty by padding;
// the pad will be the object node.
size := uint32(a.nextNode() - obj)
if size == 0 {
a.addOneNode(tInvalid, "padding", nil)
}
objNode := a.nodes[obj]
o := &object{
size: size, // excludes padding
cgn: cgn,
data: data,
}
objNode.obj = o
return o
}
// makeFunctionObject creates and returns a new function object
// (contour) for fn, and returns the id of its first node. It also
// enqueues fn for subsequent constraint generation.
//
// For a context-sensitive contour, callersite identifies the sole
// callsite; for shared contours, caller is nil.
//
func (a *analysis) makeFunctionObject(fn *ssa.Function, callersite *callsite) nodeid {
if a.log != nil {
fmt.Fprintf(a.log, "\t---- makeFunctionObject %s\n", fn)
}
// obj is the function object (identity, params, results).
obj := a.nextNode()
cgn := a.makeCGNode(fn, obj, callersite)
sig := fn.Signature
a.addOneNode(sig, "func.cgnode", nil) // (scalar with Signature type)
if recv := sig.Recv(); recv != nil {
a.addNodes(recv.Type(), "func.recv")
}
a.addNodes(sig.Params(), "func.params")
a.addNodes(sig.Results(), "func.results")
a.endObject(obj, cgn, fn).flags |= otFunction
if a.log != nil {
fmt.Fprintf(a.log, "\t----\n")
}
// Queue it up for constraint processing.
a.genq = append(a.genq, cgn)
return obj
}
// makeTagged creates a tagged object of type typ.
func (a *analysis) makeTagged(typ types.Type, cgn *cgnode, data interface{}) nodeid {
obj := a.addOneNode(typ, "tagged.T", nil) // NB: type may be non-scalar!
a.addNodes(typ, "tagged.v")
a.endObject(obj, cgn, data).flags |= otTagged
return obj
}
// makeRtype returns the canonical tagged object of type *rtype whose
// payload points to the sole rtype object for T.
//
// TODO(adonovan): move to reflect.go; it's part of the solver really.
//
func (a *analysis) makeRtype(T types.Type) nodeid {
if v := a.rtypes.At(T); v != nil {
return v.(nodeid)
}
// Create the object for the reflect.rtype itself, which is
// ordinarily a large struct but here a single node will do.
obj := a.nextNode()
a.addOneNode(T, "reflect.rtype", nil)
a.endObject(obj, nil, T)
id := a.makeTagged(a.reflectRtypePtr, nil, T)
a.nodes[id+1].typ = T // trick (each *rtype tagged object is a singleton)
a.addressOf(a.reflectRtypePtr, id+1, obj)
a.rtypes.Set(T, id)
return id
}
// rtypeValue returns the type of the *reflect.rtype-tagged object obj.
func (a *analysis) rtypeTaggedValue(obj nodeid) types.Type {
tDyn, t, _ := a.taggedValue(obj)
if tDyn != a.reflectRtypePtr {
panic(fmt.Sprintf("not a *reflect.rtype-tagged object: obj=n%d tag=%v payload=n%d", obj, tDyn, t))
}
return a.nodes[t].typ
}
// valueNode returns the id of the value node for v, creating it (and
// the association) as needed. It may return zero for uninteresting
// values containing no pointers.
//
func (a *analysis) valueNode(v ssa.Value) nodeid {
// Value nodes for locals are created en masse by genFunc.
if id, ok := a.localval[v]; ok {
return id
}
// Value nodes for globals are created on demand.
id, ok := a.globalval[v]
if !ok {
var comment string
if a.log != nil {
comment = v.String()
}
id = a.addNodes(v.Type(), comment)
if obj := a.objectNode(nil, v); obj != 0 {
a.addressOf(v.Type(), id, obj)
}
a.setValueNode(v, id, nil)
}
return id
}
// valueOffsetNode ascertains the node for tuple/struct value v,
// then returns the node for its subfield #index.
//
func (a *analysis) valueOffsetNode(v ssa.Value, index int) nodeid {
id := a.valueNode(v)
if id == 0 {
panic(fmt.Sprintf("cannot offset within n0: %s = %s", v.Name(), v))
}
return id + nodeid(a.offsetOf(v.Type(), index))
}
// isTaggedObject reports whether object obj is a tagged object.
func (a *analysis) isTaggedObject(obj nodeid) bool {
return a.nodes[obj].obj.flags&otTagged != 0
}
// taggedValue returns the dynamic type tag, the (first node of the)
// payload, and the indirect flag of the tagged object starting at id.
// Panic ensues if !isTaggedObject(id).
//
func (a *analysis) taggedValue(obj nodeid) (tDyn types.Type, v nodeid, indirect bool) {
n := a.nodes[obj]
flags := n.obj.flags
if flags&otTagged == 0 {
panic(fmt.Sprintf("not a tagged object: n%d", obj))
}
return n.typ, obj + 1, flags&otIndirect != 0
}
// funcParams returns the first node of the params (P) block of the
// function whose object node (obj.flags&otFunction) is id.
//
func (a *analysis) funcParams(id nodeid) nodeid {
n := a.nodes[id]
if n.obj == nil || n.obj.flags&otFunction == 0 {
panic(fmt.Sprintf("funcParams(n%d): not a function object block", id))
}
return id + 1
}
// funcResults returns the first node of the results (R) block of the
// function whose object node (obj.flags&otFunction) is id.
//
func (a *analysis) funcResults(id nodeid) nodeid {
n := a.nodes[id]
if n.obj == nil || n.obj.flags&otFunction == 0 {
panic(fmt.Sprintf("funcResults(n%d): not a function object block", id))
}
sig := n.typ.(*types.Signature)
id += 1 + nodeid(a.sizeof(sig.Params()))
if sig.Recv() != nil {
id += nodeid(a.sizeof(sig.Recv().Type()))
}
return id
}
// ---------- Constraint creation ----------
// copy creates a constraint of the form dst = src.
// sizeof is the width (in logical fields) of the copied type.
//
func (a *analysis) copy(dst, src nodeid, sizeof uint32) {
if src == dst || sizeof == 0 {
return // trivial
}
if src == 0 || dst == 0 {
panic(fmt.Sprintf("ill-typed copy dst=n%d src=n%d", dst, src))
}
for i := uint32(0); i < sizeof; i++ {
a.addConstraint(&copyConstraint{dst, src})
src++
dst++
}
}
// addressOf creates a constraint of the form id = &obj.
// T is the type of the address.
func (a *analysis) addressOf(T types.Type, id, obj nodeid) {
if id == 0 {
panic("addressOf: zero id")
}
if obj == 0 {
panic("addressOf: zero obj")
}
if a.shouldTrack(T) {
a.addConstraint(&addrConstraint{id, obj})
}
}
// load creates a load constraint of the form dst = src[offset].
// offset is the pointer offset in logical fields.
// sizeof is the width (in logical fields) of the loaded type.
//
func (a *analysis) load(dst, src nodeid, offset, sizeof uint32) {
if dst == 0 {
return // load of non-pointerlike value
}
if src == 0 && dst == 0 {
return // non-pointerlike operation
}
if src == 0 || dst == 0 {
panic(fmt.Sprintf("ill-typed load dst=n%d src=n%d", dst, src))
}
for i := uint32(0); i < sizeof; i++ {
a.addConstraint(&loadConstraint{offset, dst, src})
offset++
dst++
}
}
// store creates a store constraint of the form dst[offset] = src.
// offset is the pointer offset in logical fields.
// sizeof is the width (in logical fields) of the stored type.
//
func (a *analysis) store(dst, src nodeid, offset uint32, sizeof uint32) {
if src == 0 {
return // store of non-pointerlike value
}
if src == 0 && dst == 0 {
return // non-pointerlike operation
}
if src == 0 || dst == 0 {
panic(fmt.Sprintf("ill-typed store dst=n%d src=n%d", dst, src))
}
for i := uint32(0); i < sizeof; i++ {
a.addConstraint(&storeConstraint{offset, dst, src})
offset++
src++
}
}
// offsetAddr creates an offsetAddr constraint of the form dst = &src.#offset.
// offset is the field offset in logical fields.
// T is the type of the address.
//
func (a *analysis) offsetAddr(T types.Type, dst, src nodeid, offset uint32) {
if !a.shouldTrack(T) {
return
}
if offset == 0 {
// Simplify dst = &src->f0
// to dst = src
// (NB: this optimisation is defeated by the identity
// field prepended to struct and array objects.)
a.copy(dst, src, 1)
} else {
a.addConstraint(&offsetAddrConstraint{offset, dst, src})
}
}
// typeAssert creates a typeFilter or untag constraint of the form dst = src.(T):
// typeFilter for an interface, untag for a concrete type.
// The exact flag is specified as for untagConstraint.
//
func (a *analysis) typeAssert(T types.Type, dst, src nodeid, exact bool) {
if isInterface(T) {
a.addConstraint(&typeFilterConstraint{T, dst, src})
} else {
a.addConstraint(&untagConstraint{T, dst, src, exact})
}
}
// addConstraint adds c to the constraint set.
func (a *analysis) addConstraint(c constraint) {
a.constraints = append(a.constraints, c)
if a.log != nil {
fmt.Fprintf(a.log, "\t%s\n", c)
}
}
// copyElems generates load/store constraints for *dst = *src,
// where src and dst are slices or *arrays.
//
func (a *analysis) copyElems(cgn *cgnode, typ types.Type, dst, src ssa.Value) {
tmp := a.addNodes(typ, "copy")
sz := a.sizeof(typ)
a.genLoad(cgn, tmp, src, 1, sz)
a.genStore(cgn, dst, tmp, 1, sz)
}
// ---------- Constraint generation ----------
// genConv generates constraints for the conversion operation conv.
func (a *analysis) genConv(conv *ssa.Convert, cgn *cgnode) {
res := a.valueNode(conv)
if res == 0 {
return // result is non-pointerlike
}
tSrc := conv.X.Type()
tDst := conv.Type()
switch utSrc := tSrc.Underlying().(type) {
case *types.Slice:
// []byte/[]rune -> string?
return
case *types.Pointer:
// *T -> unsafe.Pointer?
if tDst.Underlying() == tUnsafePtr {
return // we don't model unsafe aliasing (unsound)
}
case *types.Basic:
switch tDst.Underlying().(type) {
case *types.Pointer:
// Treat unsafe.Pointer->*T conversions like
// new(T) and create an unaliased object.
if utSrc == tUnsafePtr {
obj := a.addNodes(mustDeref(tDst), "unsafe.Pointer conversion")
a.endObject(obj, cgn, conv)
a.addressOf(tDst, res, obj)
return
}
case *types.Slice:
// string -> []byte/[]rune (or named aliases)?
if utSrc.Info()&types.IsString != 0 {
obj := a.addNodes(sliceToArray(tDst), "convert")
a.endObject(obj, cgn, conv)
a.addressOf(tDst, res, obj)
return
}
case *types.Basic:
// All basic-to-basic type conversions are no-ops.
// This includes uintptr<->unsafe.Pointer conversions,
// which we (unsoundly) ignore.
return
}
}
panic(fmt.Sprintf("illegal *ssa.Convert %s -> %s: %s", tSrc, tDst, conv.Parent()))
}
// genAppend generates constraints for a call to append.
func (a *analysis) genAppend(instr *ssa.Call, cgn *cgnode) {
// Consider z = append(x, y). y is optional.
// This may allocate a new [1]T array; call its object w.
// We get the following constraints:
// z = x
// z = &w
// *z = *y
x := instr.Call.Args[0]
z := instr
a.copy(a.valueNode(z), a.valueNode(x), 1) // z = x
if len(instr.Call.Args) == 1 {
return // no allocation for z = append(x) or _ = append(x).
}
// TODO(adonovan): test append([]byte, ...string) []byte.
y := instr.Call.Args[1]
tArray := sliceToArray(instr.Call.Args[0].Type())
var w nodeid
w = a.nextNode()
a.addNodes(tArray, "append")
a.endObject(w, cgn, instr)
a.copyElems(cgn, tArray.Elem(), z, y) // *z = *y
a.addressOf(instr.Type(), a.valueNode(z), w) // z = &w
}
// genBuiltinCall generates contraints for a call to a built-in.
func (a *analysis) genBuiltinCall(instr ssa.CallInstruction, cgn *cgnode) {
call := instr.Common()
switch call.Value.(*ssa.Builtin).Name() {
case "append":
// Safe cast: append cannot appear in a go or defer statement.
a.genAppend(instr.(*ssa.Call), cgn)
case "copy":
tElem := call.Args[0].Type().Underlying().(*types.Slice).Elem()
a.copyElems(cgn, tElem, call.Args[0], call.Args[1])
case "panic":
a.copy(a.panicNode, a.valueNode(call.Args[0]), 1)
case "recover":
if v := instr.Value(); v != nil {
a.copy(a.valueNode(v), a.panicNode, 1)
}
case "print":
// In the tests, the probe might be the sole reference
// to its arg, so make sure we create nodes for it.
if len(call.Args) > 0 {
a.valueNode(call.Args[0])
}
case "ssa:wrapnilchk":
a.copy(a.valueNode(instr.Value()), a.valueNode(call.Args[0]), 1)
default:
// No-ops: close len cap real imag complex print println delete.
}
}
// shouldUseContext defines the context-sensitivity policy. It
// returns true if we should analyse all static calls to fn anew.
//
// Obviously this interface rather limits how much freedom we have to
// choose a policy. The current policy, rather arbitrarily, is true
// for intrinsics and accessor methods (actually: short, single-block,
// call-free functions). This is just a starting point.
//
func (a *analysis) shouldUseContext(fn *ssa.Function) bool {
if a.findIntrinsic(fn) != nil {
return true // treat intrinsics context-sensitively
}
if len(fn.Blocks) != 1 {
return false // too expensive
}
blk := fn.Blocks[0]
if len(blk.Instrs) > 10 {
return false // too expensive
}
if fn.Synthetic != "" && (fn.Pkg == nil || fn != fn.Pkg.Func("init")) {
return true // treat synthetic wrappers context-sensitively
}
for _, instr := range blk.Instrs {
switch instr := instr.(type) {
case ssa.CallInstruction:
// Disallow function calls (except to built-ins)
// because of the danger of unbounded recursion.
if _, ok := instr.Common().Value.(*ssa.Builtin); !ok {
return false
}
}
}
return true
}
// genStaticCall generates constraints for a statically dispatched function call.
func (a *analysis) genStaticCall(caller *cgnode, site *callsite, call *ssa.CallCommon, result nodeid) {
fn := call.StaticCallee()
// Special cases for inlined intrinsics.
switch fn {
case a.runtimeSetFinalizer:
// Inline SetFinalizer so the call appears direct.
site.targets = a.addOneNode(tInvalid, "SetFinalizer.targets", nil)
a.addConstraint(&runtimeSetFinalizerConstraint{
targets: site.targets,
x: a.valueNode(call.Args[0]),
f: a.valueNode(call.Args[1]),
})
return
case a.reflectValueCall:
// Inline (reflect.Value).Call so the call appears direct.
dotdotdot := false
ret := reflectCallImpl(a, caller, site, a.valueNode(call.Args[0]), a.valueNode(call.Args[1]), dotdotdot)
if result != 0 {
a.addressOf(fn.Signature.Results().At(0).Type(), result, ret)
}
return
}
// Ascertain the context (contour/cgnode) for a particular call.
var obj nodeid
if a.shouldUseContext(fn) {
obj = a.makeFunctionObject(fn, site) // new contour
} else {
obj = a.objectNode(nil, fn) // shared contour
}
a.callEdge(caller, site, obj)
sig := call.Signature()
// Copy receiver, if any.
params := a.funcParams(obj)
args := call.Args
if sig.Recv() != nil {
sz := a.sizeof(sig.Recv().Type())
a.copy(params, a.valueNode(args[0]), sz)
params += nodeid(sz)
args = args[1:]
}
// Copy actual parameters into formal params block.
// Must loop, since the actuals aren't contiguous.
for i, arg := range args {
sz := a.sizeof(sig.Params().At(i).Type())
a.copy(params, a.valueNode(arg), sz)
params += nodeid(sz)
}
// Copy formal results block to actual result.
if result != 0 {
a.copy(result, a.funcResults(obj), a.sizeof(sig.Results()))
}
}
// genDynamicCall generates constraints for a dynamic function call.
func (a *analysis) genDynamicCall(caller *cgnode, site *callsite, call *ssa.CallCommon, result nodeid) {
// pts(targets) will be the set of possible call targets.
site.targets = a.valueNode(call.Value)
// We add dynamic closure rules that store the arguments into
// the P-block and load the results from the R-block of each
// function discovered in pts(targets).
sig := call.Signature()
var offset uint32 = 1 // P/R block starts at offset 1
for i, arg := range call.Args {
sz := a.sizeof(sig.Params().At(i).Type())
a.genStore(caller, call.Value, a.valueNode(arg), offset, sz)
offset += sz
}
if result != 0 {
a.genLoad(caller, result, call.Value, offset, a.sizeof(sig.Results()))
}
}
// genInvoke generates constraints for a dynamic method invocation.
func (a *analysis) genInvoke(caller *cgnode, site *callsite, call *ssa.CallCommon, result nodeid) {
if call.Value.Type() == a.reflectType {
a.genInvokeReflectType(caller, site, call, result)
return
}
sig := call.Signature()
// Allocate a contiguous targets/params/results block for this call.
block := a.nextNode()
// pts(targets) will be the set of possible call targets
site.targets = a.addOneNode(sig, "invoke.targets", nil)
p := a.addNodes(sig.Params(), "invoke.params")
r := a.addNodes(sig.Results(), "invoke.results")
// Copy the actual parameters into the call's params block.
for i, n := 0, sig.Params().Len(); i < n; i++ {
sz := a.sizeof(sig.Params().At(i).Type())
a.copy(p, a.valueNode(call.Args[i]), sz)
p += nodeid(sz)
}
// Copy the call's results block to the actual results.
if result != 0 {
a.copy(result, r, a.sizeof(sig.Results()))
}
// We add a dynamic invoke constraint that will connect the
// caller's and the callee's P/R blocks for each discovered
// call target.
a.addConstraint(&invokeConstraint{call.Method, a.valueNode(call.Value), block})
}
// genInvokeReflectType is a specialization of genInvoke where the
// receiver type is a reflect.Type, under the assumption that there
// can be at most one implementation of this interface, *reflect.rtype.
//
// (Though this may appear to be an instance of a pattern---method
// calls on interfaces known to have exactly one implementation---in
// practice it occurs rarely, so we special case for reflect.Type.)
//
// In effect we treat this:
// var rt reflect.Type = ...
// rt.F()
// as this:
// rt.(*reflect.rtype).F()
//
func (a *analysis) genInvokeReflectType(caller *cgnode, site *callsite, call *ssa.CallCommon, result nodeid) {
// Unpack receiver into rtype
rtype := a.addOneNode(a.reflectRtypePtr, "rtype.recv", nil)
recv := a.valueNode(call.Value)
a.typeAssert(a.reflectRtypePtr, rtype, recv, true)
// Look up the concrete method.
fn := a.prog.LookupMethod(a.reflectRtypePtr, call.Method.Pkg(), call.Method.Name())
obj := a.makeFunctionObject(fn, site) // new contour for this call
a.callEdge(caller, site, obj)
// From now on, it's essentially a static call, but little is
// gained by factoring together the code for both cases.
sig := fn.Signature // concrete method
targets := a.addOneNode(sig, "call.targets", nil)
a.addressOf(sig, targets, obj) // (a singleton)
// Copy receiver.
params := a.funcParams(obj)
a.copy(params, rtype, 1)
params++
// Copy actual parameters into formal P-block.
// Must loop, since the actuals aren't contiguous.
for i, arg := range call.Args {
sz := a.sizeof(sig.Params().At(i).Type())
a.copy(params, a.valueNode(arg), sz)
params += nodeid(sz)
}
// Copy formal R-block to actual R-block.
if result != 0 {
a.copy(result, a.funcResults(obj), a.sizeof(sig.Results()))
}
}
// genCall generates constraints for call instruction instr.
func (a *analysis) genCall(caller *cgnode, instr ssa.CallInstruction) {
call := instr.Common()
// Intrinsic implementations of built-in functions.
if _, ok := call.Value.(*ssa.Builtin); ok {
a.genBuiltinCall(instr, caller)
return
}
var result nodeid
if v := instr.Value(); v != nil {
result = a.valueNode(v)
}
site := &callsite{instr: instr}
if call.StaticCallee() != nil {
a.genStaticCall(caller, site, call, result)
} else if call.IsInvoke() {
a.genInvoke(caller, site, call, result)
} else {
a.genDynamicCall(caller, site, call, result)
}
caller.sites = append(caller.sites, site)
if a.log != nil {
// TODO(adonovan): debug: improve log message.
fmt.Fprintf(a.log, "\t%s to targets %s from %s\n", site, site.targets, caller)
}
}
// objectNode returns the object to which v points, if known.
// In other words, if the points-to set of v is a singleton, it
// returns the sole label, zero otherwise.
//
// We exploit this information to make the generated constraints less
// dynamic. For example, a complex load constraint can be replaced by
// a simple copy constraint when the sole destination is known a priori.
//
// Some SSA instructions always have singletons points-to sets:
// Alloc, Function, Global, MakeChan, MakeClosure, MakeInterface, MakeMap, MakeSlice.
// Others may be singletons depending on their operands:
// FreeVar, Const, Convert, FieldAddr, IndexAddr, Slice.
//
// Idempotent. Objects are created as needed, possibly via recursion
// down the SSA value graph, e.g IndexAddr(FieldAddr(Alloc))).
//
func (a *analysis) objectNode(cgn *cgnode, v ssa.Value) nodeid {
switch v.(type) {
case *ssa.Global, *ssa.Function, *ssa.Const, *ssa.FreeVar:
// Global object.
obj, ok := a.globalobj[v]
if !ok {
switch v := v.(type) {
case *ssa.Global:
obj = a.nextNode()
a.addNodes(mustDeref(v.Type()), "global")
a.endObject(obj, nil, v)
case *ssa.Function:
obj = a.makeFunctionObject(v, nil)
case *ssa.Const:
// not addressable
case *ssa.FreeVar:
// not addressable
}
if a.log != nil {
fmt.Fprintf(a.log, "\tglobalobj[%s] = n%d\n", v, obj)
}
a.globalobj[v] = obj
}
return obj
}
// Local object.
obj, ok := a.localobj[v]
if !ok {
switch v := v.(type) {
case *ssa.Alloc:
obj = a.nextNode()
a.addNodes(mustDeref(v.Type()), "alloc")
a.endObject(obj, cgn, v)
case *ssa.MakeSlice:
obj = a.nextNode()
a.addNodes(sliceToArray(v.Type()), "makeslice")
a.endObject(obj, cgn, v)
case *ssa.MakeChan:
obj = a.nextNode()
a.addNodes(v.Type().Underlying().(*types.Chan).Elem(), "makechan")
a.endObject(obj, cgn, v)
case *ssa.MakeMap:
obj = a.nextNode()
tmap := v.Type().Underlying().(*types.Map)
a.addNodes(tmap.Key(), "makemap.key")
elem := a.addNodes(tmap.Elem(), "makemap.value")
// To update the value field, MapUpdate
// generates store-with-offset constraints which
// the presolver can't model, so we must mark
// those nodes indirect.
for id, end := elem, elem+nodeid(a.sizeof(tmap.Elem())); id < end; id++ {
a.mapValues = append(a.mapValues, id)
}
a.endObject(obj, cgn, v)
case *ssa.MakeInterface:
tConc := v.X.Type()
obj = a.makeTagged(tConc, cgn, v)
// Copy the value into it, if nontrivial.
if x := a.valueNode(v.X); x != 0 {
a.copy(obj+1, x, a.sizeof(tConc))
}
case *ssa.FieldAddr:
if xobj := a.objectNode(cgn, v.X); xobj != 0 {
obj = xobj + nodeid(a.offsetOf(mustDeref(v.X.Type()), v.Field))
}
case *ssa.IndexAddr:
if xobj := a.objectNode(cgn, v.X); xobj != 0 {
obj = xobj + 1
}
case *ssa.Slice:
obj = a.objectNode(cgn, v.X)
case *ssa.Convert:
// TODO(adonovan): opt: handle these cases too:
// - unsafe.Pointer->*T conversion acts like Alloc
// - string->[]byte/[]rune conversion acts like MakeSlice
}
if a.log != nil {
fmt.Fprintf(a.log, "\tlocalobj[%s] = n%d\n", v.Name(), obj)
}
a.localobj[v] = obj
}
return obj
}
// genLoad generates constraints for result = *(ptr + val).
func (a *analysis) genLoad(cgn *cgnode, result nodeid, ptr ssa.Value, offset, sizeof uint32) {
if obj := a.objectNode(cgn, ptr); obj != 0 {
// Pre-apply loadConstraint.solve().
a.copy(result, obj+nodeid(offset), sizeof)
} else {
a.load(result, a.valueNode(ptr), offset, sizeof)
}
}
// genOffsetAddr generates constraints for a 'v=ptr.field' (FieldAddr)
// or 'v=ptr[*]' (IndexAddr) instruction v.
func (a *analysis) genOffsetAddr(cgn *cgnode, v ssa.Value, ptr nodeid, offset uint32) {
dst := a.valueNode(v)
if obj := a.objectNode(cgn, v); obj != 0 {
// Pre-apply offsetAddrConstraint.solve().
a.addressOf(v.Type(), dst, obj)
} else {
a.offsetAddr(v.Type(), dst, ptr, offset)
}
}
// genStore generates constraints for *(ptr + offset) = val.
func (a *analysis) genStore(cgn *cgnode, ptr ssa.Value, val nodeid, offset, sizeof uint32) {
if obj := a.objectNode(cgn, ptr); obj != 0 {
// Pre-apply storeConstraint.solve().
a.copy(obj+nodeid(offset), val, sizeof)
} else {
a.store(a.valueNode(ptr), val, offset, sizeof)
}
}
// genInstr generates constraints for instruction instr in context cgn.
func (a *analysis) genInstr(cgn *cgnode, instr ssa.Instruction) {
if a.log != nil {
var prefix string
if val, ok := instr.(ssa.Value); ok {
prefix = val.Name() + " = "
}
fmt.Fprintf(a.log, "; %s%s\n", prefix, instr)
}
switch instr := instr.(type) {
case *ssa.DebugRef:
// no-op.
case *ssa.UnOp:
switch instr.Op {
case token.ARROW: // <-x
// We can ignore instr.CommaOk because the node we're
// altering is always at zero offset relative to instr
tElem := instr.X.Type().Underlying().(*types.Chan).Elem()
a.genLoad(cgn, a.valueNode(instr), instr.X, 0, a.sizeof(tElem))
case token.MUL: // *x
a.genLoad(cgn, a.valueNode(instr), instr.X, 0, a.sizeof(instr.Type()))
default:
// NOT, SUB, XOR: no-op.
}
case *ssa.BinOp:
// All no-ops.
case ssa.CallInstruction: // *ssa.Call, *ssa.Go, *ssa.Defer
a.genCall(cgn, instr)
case *ssa.ChangeType:
a.copy(a.valueNode(instr), a.valueNode(instr.X), 1)
case *ssa.Convert:
a.genConv(instr, cgn)
case *ssa.Extract:
a.copy(a.valueNode(instr),
a.valueOffsetNode(instr.Tuple, instr.Index),
a.sizeof(instr.Type()))
case *ssa.FieldAddr:
a.genOffsetAddr(cgn, instr, a.valueNode(instr.X),
a.offsetOf(mustDeref(instr.X.Type()), instr.Field))
case *ssa.IndexAddr:
a.genOffsetAddr(cgn, instr, a.valueNode(instr.X), 1)
case *ssa.Field:
a.copy(a.valueNode(instr),
a.valueOffsetNode(instr.X, instr.Field),
a.sizeof(instr.Type()))
case *ssa.Index:
a.copy(a.valueNode(instr), 1+a.valueNode(instr.X), a.sizeof(instr.Type()))
case *ssa.Select:
recv := a.valueOffsetNode(instr, 2) // instr : (index, recvOk, recv0, ... recv_n-1)
for _, st := range instr.States {
elemSize := a.sizeof(st.Chan.Type().Underlying().(*types.Chan).Elem())
switch st.Dir {
case types.RecvOnly:
a.genLoad(cgn, recv, st.Chan, 0, elemSize)
recv += nodeid(elemSize)
case types.SendOnly:
a.genStore(cgn, st.Chan, a.valueNode(st.Send), 0, elemSize)
}
}
case *ssa.Return:
results := a.funcResults(cgn.obj)
for _, r := range instr.Results {
sz := a.sizeof(r.Type())
a.copy(results, a.valueNode(r), sz)
results += nodeid(sz)
}
case *ssa.Send:
a.genStore(cgn, instr.Chan, a.valueNode(instr.X), 0, a.sizeof(instr.X.Type()))
case *ssa.Store:
a.genStore(cgn, instr.Addr, a.valueNode(instr.Val), 0, a.sizeof(instr.Val.Type()))
case *ssa.Alloc, *ssa.MakeSlice, *ssa.MakeChan, *ssa.MakeMap, *ssa.MakeInterface:
v := instr.(ssa.Value)
a.addressOf(v.Type(), a.valueNode(v), a.objectNode(cgn, v))
case *ssa.ChangeInterface:
a.copy(a.valueNode(instr), a.valueNode(instr.X), 1)
case *ssa.TypeAssert:
a.typeAssert(instr.AssertedType, a.valueNode(instr), a.valueNode(instr.X), true)
case *ssa.Slice:
a.copy(a.valueNode(instr), a.valueNode(instr.X), 1)
case *ssa.If, *ssa.Jump:
// no-op.
case *ssa.Phi:
sz := a.sizeof(instr.Type())
for _, e := range instr.Edges {
a.copy(a.valueNode(instr), a.valueNode(e), sz)
}
case *ssa.MakeClosure:
fn := instr.Fn.(*ssa.Function)
a.copy(a.valueNode(instr), a.valueNode(fn), 1)
// Free variables are treated like global variables.
for i, b := range instr.Bindings {
a.copy(a.valueNode(fn.FreeVars[i]), a.valueNode(b), a.sizeof(b.Type()))
}
case *ssa.RunDefers:
// The analysis is flow insensitive, so we just "call"
// defers as we encounter them.
case *ssa.Range:
// Do nothing. Next{Iter: *ssa.Range} handles this case.
case *ssa.Next:
if !instr.IsString { // map
// Assumes that Next is always directly applied to a Range result.
theMap := instr.Iter.(*ssa.Range).X
tMap := theMap.Type().Underlying().(*types.Map)
ksize := a.sizeof(tMap.Key())
vsize := a.sizeof(tMap.Elem())
// The k/v components of the Next tuple may each be invalid.
tTuple := instr.Type().(*types.Tuple)
// Load from the map's (k,v) into the tuple's (ok, k, v).
osrc := uint32(0) // offset within map object
odst := uint32(1) // offset within tuple (initially just after 'ok bool')
sz := uint32(0) // amount to copy
// Is key valid?
if tTuple.At(1).Type() != tInvalid {
sz += ksize
} else {
odst += ksize
osrc += ksize
}
// Is value valid?
if tTuple.At(2).Type() != tInvalid {
sz += vsize
}
a.genLoad(cgn, a.valueNode(instr)+nodeid(odst), theMap, osrc, sz)
}
case *ssa.Lookup:
if tMap, ok := instr.X.Type().Underlying().(*types.Map); ok {
// CommaOk can be ignored: field 0 is a no-op.
ksize := a.sizeof(tMap.Key())
vsize := a.sizeof(tMap.Elem())
a.genLoad(cgn, a.valueNode(instr), instr.X, ksize, vsize)
}
case *ssa.MapUpdate:
tmap := instr.Map.Type().Underlying().(*types.Map)
ksize := a.sizeof(tmap.Key())
vsize := a.sizeof(tmap.Elem())
a.genStore(cgn, instr.Map, a.valueNode(instr.Key), 0, ksize)
a.genStore(cgn, instr.Map, a.valueNode(instr.Value), ksize, vsize)
case *ssa.Panic:
a.copy(a.panicNode, a.valueNode(instr.X), 1)
default:
panic(fmt.Sprintf("unimplemented: %T", instr))
}
}
func (a *analysis) makeCGNode(fn *ssa.Function, obj nodeid, callersite *callsite) *cgnode {
cgn := &cgnode{fn: fn, obj: obj, callersite: callersite}
a.cgnodes = append(a.cgnodes, cgn)
return cgn
}
// genRootCalls generates the synthetic root of the callgraph and the
// initial calls from it to the analysis scope, such as main, a test
// or a library.
//
func (a *analysis) genRootCalls() *cgnode {
r := a.prog.NewFunction("<root>", new(types.Signature), "root of callgraph")
root := a.makeCGNode(r, 0, nil)
// TODO(adonovan): make an ssa utility to construct an actual
// root function so we don't need to special-case site-less
// call edges.
// For each main package, call main.init(), main.main().
for _, mainPkg := range a.config.Mains {
main := mainPkg.Func("main")
if main == nil {
panic(fmt.Sprintf("%s has no main function", mainPkg))
}
targets := a.addOneNode(main.Signature, "root.targets", nil)
site := &callsite{targets: targets}
root.sites = append(root.sites, site)
for _, fn := range [2]*ssa.Function{mainPkg.Func("init"), main} {
if a.log != nil {
fmt.Fprintf(a.log, "\troot call to %s:\n", fn)
}
a.copy(targets, a.valueNode(fn), 1)
}
}
return root
}
// genFunc generates constraints for function fn.
func (a *analysis) genFunc(cgn *cgnode) {
fn := cgn.fn
impl := a.findIntrinsic(fn)
if a.log != nil {
fmt.Fprintf(a.log, "\n\n==== Generating constraints for %s, %s\n", cgn, cgn.contour())
// Hack: don't display body if intrinsic.
if impl != nil {
fn2 := *cgn.fn // copy
fn2.Locals = nil
fn2.Blocks = nil
fn2.WriteTo(a.log)
} else {
cgn.fn.WriteTo(a.log)
}
}
if impl != nil {
impl(a, cgn)
return
}
if fn.Blocks == nil {
// External function with no intrinsic treatment.
// We'll warn about calls to such functions at the end.
return
}
if a.log != nil {
fmt.Fprintln(a.log, "; Creating nodes for local values")
}
a.localval = make(map[ssa.Value]nodeid)
a.localobj = make(map[ssa.Value]nodeid)
// The value nodes for the params are in the func object block.
params := a.funcParams(cgn.obj)
for _, p := range fn.Params {
a.setValueNode(p, params, cgn)
params += nodeid(a.sizeof(p.Type()))
}
// Free variables have global cardinality:
// the outer function sets them with MakeClosure;
// the inner function accesses them with FreeVar.
//
// TODO(adonovan): treat free vars context-sensitively.
// Create value nodes for all value instructions
// since SSA may contain forward references.
var space [10]*ssa.Value
for _, b := range fn.Blocks {
for _, instr := range b.Instrs {
switch instr := instr.(type) {
case *ssa.Range:
// do nothing: it has a funky type,
// and *ssa.Next does all the work.
case ssa.Value:
var comment string
if a.log != nil {
comment = instr.Name()
}
id := a.addNodes(instr.Type(), comment)
a.setValueNode(instr, id, cgn)
}
// Record all address-taken functions (for presolver).
rands := instr.Operands(space[:0])
if call, ok := instr.(ssa.CallInstruction); ok && !call.Common().IsInvoke() {
// Skip CallCommon.Value in "call" mode.
// TODO(adonovan): fix: relies on unspecified ordering. Specify it.
rands = rands[1:]
}
for _, rand := range rands {
if atf, ok := (*rand).(*ssa.Function); ok {
a.atFuncs[atf] = true
}
}
}
}
// Generate constraints for instructions.
for _, b := range fn.Blocks {
for _, instr := range b.Instrs {
a.genInstr(cgn, instr)
}
}
a.localval = nil
a.localobj = nil
}
// genMethodsOf generates nodes and constraints for all methods of type T.
func (a *analysis) genMethodsOf(T types.Type) {
itf := isInterface(T)
// TODO(adonovan): can we skip this entirely if itf is true?
// I think so, but the answer may depend on reflection.
mset := a.prog.MethodSets.MethodSet(T)
for i, n := 0, mset.Len(); i < n; i++ {
m := a.prog.MethodValue(mset.At(i))
a.valueNode(m)
if !itf {
// Methods of concrete types are address-taken functions.
a.atFuncs[m] = true
}
}
}
// generate generates offline constraints for the entire program.
func (a *analysis) generate() {
start("Constraint generation")
if a.log != nil {
fmt.Fprintln(a.log, "==== Generating constraints")
}
// Create a dummy node since we use the nodeid 0 for
// non-pointerlike variables.
a.addNodes(tInvalid, "(zero)")
// Create the global node for panic values.
a.panicNode = a.addNodes(tEface, "panic")
// Create nodes and constraints for all methods of reflect.rtype.
// (Shared contours are used by dynamic calls to reflect.Type
// methods---typically just String().)
if rtype := a.reflectRtypePtr; rtype != nil {
a.genMethodsOf(rtype)
}
root := a.genRootCalls()
if a.config.BuildCallGraph {
a.result.CallGraph = callgraph.New(root.fn)
}
// Create nodes and constraints for all methods of all types
// that are dynamically accessible via reflection or interfaces.
for _, T := range a.prog.RuntimeTypes() {
a.genMethodsOf(T)
}
// Generate constraints for functions as they become reachable
// from the roots. (No constraints are generated for functions
// that are dead in this analysis scope.)
for len(a.genq) > 0 {
cgn := a.genq[0]
a.genq = a.genq[1:]
a.genFunc(cgn)
}
// The runtime magically allocates os.Args; so should we.
if os := a.prog.ImportedPackage("os"); os != nil {
// In effect: os.Args = new([1]string)[:]
T := types.NewSlice(types.Typ[types.String])
obj := a.addNodes(sliceToArray(T), "<command-line args>")
a.endObject(obj, nil, "<command-line args>")
a.addressOf(T, a.objectNode(nil, os.Var("Args")), obj)
}
// Discard generation state, to avoid confusion after node renumbering.
a.panicNode = 0
a.globalval = nil
a.localval = nil
a.localobj = nil
stop("Constraint generation")
}