329 lines
10 KiB
Go
Raw Normal View History

// Package handler provides implementations of the jrpc2.Assigner interface,
// and support for adapting functions to the jrpc2.Handler interface.
package handler
import (
"context"
"encoding/json"
"errors"
"fmt"
"reflect"
"strings"
"bitbucket.org/creachadair/stringset"
"github.com/creachadair/jrpc2"
"github.com/creachadair/jrpc2/code"
)
// A Func adapts a function having the correct signature to a jrpc2.Handler.
type Func func(context.Context, *jrpc2.Request) (interface{}, error)
// Handle implements the jrpc2.Handler interface by calling m.
func (m Func) Handle(ctx context.Context, req *jrpc2.Request) (interface{}, error) {
return m(ctx, req)
}
// A Map is a trivial implementation of the jrpc2.Assigner interface that looks
// up method names in a map of static jrpc2.Handler values.
type Map map[string]jrpc2.Handler
// Assign implements part of the jrpc2.Assigner interface.
func (m Map) Assign(_ context.Context, method string) jrpc2.Handler { return m[method] }
// Names implements part of the jrpc2.Assigner interface.
func (m Map) Names() []string { return stringset.FromKeys(m).Elements() }
// A ServiceMap combines multiple assigners into one, permitting a server to
// export multiple services under different names.
//
// Example:
// m := handler.ServiceMap{
// "Foo": handler.NewService(fooService), // methods Foo.A, Foo.B, etc.
// "Bar": handler.NewService(barService), // methods Bar.A, Bar.B, etc.
// }
//
type ServiceMap map[string]jrpc2.Assigner
// Assign splits the inbound method name as Service.Method, and passes the
// Method portion to the corresponding Service assigner. If method does not
// have the form Service.Method, or if Service is not set in m, the lookup
// fails and returns nil.
func (m ServiceMap) Assign(ctx context.Context, method string) jrpc2.Handler {
parts := strings.SplitN(method, ".", 2)
if len(parts) == 1 {
return nil
} else if ass, ok := m[parts[0]]; ok {
return ass.Assign(ctx, parts[1])
}
return nil
}
// Names reports the composed names of all the methods in the service, each
// having the form Service.Method.
func (m ServiceMap) Names() []string {
var all stringset.Set
for svc, assigner := range m {
for _, name := range assigner.Names() {
all.Add(svc + "." + name)
}
}
return all.Elements()
}
// New adapts a function to a jrpc2.Handler. The concrete value of fn must be a
// function with one of the following type signatures:
//
// func(context.Context) error
// func(context.Context) Y
// func(context.Context) (Y, error)
// func(context.Context, X) error
// func(context.Context, X) Y
// func(context.Context, X) (Y, error)
// func(context.Context, ...X) (Y, error)
// func(context.Context, *jrpc2.Request) (Y, error)
// func(context.Context, *jrpc2.Request) (interface{}, error)
//
// for JSON-marshalable types X and Y. New will panic if the type of fn does
// not have one of these forms. The resulting method will handle encoding and
// decoding of JSON and report appropriate errors.
//
// Functions adapted by in this way can obtain the *jrpc2.Request value using
// the jrpc2.InboundRequest helper on the context value supplied by the server.
func New(fn interface{}) Func {
m, err := newHandler(fn)
if err != nil {
panic(err)
}
return m
}
// NewService adapts the methods of a value to a map from method names to
// Handler implementations as constructed by New. It will panic if obj has no
// exported methods with a suitable signature.
func NewService(obj interface{}) Map {
out := make(Map)
val := reflect.ValueOf(obj)
typ := val.Type()
// This considers only exported methods, as desired.
for i, n := 0, val.NumMethod(); i < n; i++ {
mi := val.Method(i)
if v, err := newHandler(mi.Interface()); err == nil {
out[typ.Method(i).Name] = v
}
}
if len(out) == 0 {
panic("no matching exported methods")
}
return out
}
var (
ctxType = reflect.TypeOf((*context.Context)(nil)).Elem() // type context.Context
errType = reflect.TypeOf((*error)(nil)).Elem() // type error
reqType = reflect.TypeOf((*jrpc2.Request)(nil)) // type *jrpc2.Request
)
func newHandler(fn interface{}) (Func, error) {
if fn == nil {
return nil, errors.New("nil method")
}
// Special case: If fn has the exact signature of the Handle method, don't do
// any (additional) reflection at all.
if f, ok := fn.(func(context.Context, *jrpc2.Request) (interface{}, error)); ok {
return Func(f), nil
}
// Check that fn is a function of one of the correct forms.
typ, err := checkFunctionType(fn)
if err != nil {
return nil, err
}
// Construct a function to unpack the parameters from the request message,
// based on the signature of the user's callback.
var newinput func(req *jrpc2.Request) ([]reflect.Value, error)
if typ.NumIn() == 1 {
// Case 1: The function does not want any request parameters.
// Nothing needs to be decoded, but verify no parameters were passed.
newinput = func(req *jrpc2.Request) ([]reflect.Value, error) {
if req.HasParams() {
return nil, jrpc2.Errorf(code.InvalidParams, "no parameters accepted")
}
return nil, nil
}
} else if a := typ.In(1); a == reqType {
// Case 2: The function wants the underlying *jrpc2.Request value.
newinput = func(req *jrpc2.Request) ([]reflect.Value, error) {
return []reflect.Value{reflect.ValueOf(req)}, nil
}
} else {
// Check whether the function wants a pointer to its argument. We need
// to create one either way to support unmarshaling, but we need to
// indirect it back off if the callee didn't want it.
// Case 3a: The function wants a bare value, not a pointer.
argType := typ.In(1)
undo := reflect.Value.Elem
if argType.Kind() == reflect.Ptr {
// Case 3b: The function wants a pointer.
undo = func(v reflect.Value) reflect.Value { return v }
argType = argType.Elem()
}
newinput = func(req *jrpc2.Request) ([]reflect.Value, error) {
in := reflect.New(argType).Interface()
if err := req.UnmarshalParams(in); err != nil {
return nil, jrpc2.Errorf(code.InvalidParams, "invalid parameters: %v", err)
}
arg := reflect.ValueOf(in)
return []reflect.Value{undo(arg)}, nil
}
}
// Construct a function to decode the result values.
var decodeOut func([]reflect.Value) (interface{}, error)
switch typ.NumOut() {
case 1:
if typ.Out(0) == errType {
// A function that returns only error: Result is always nil.
decodeOut = func(vals []reflect.Value) (interface{}, error) {
oerr := vals[0].Interface()
if oerr != nil {
return nil, oerr.(error)
}
return nil, nil
}
} else {
// A function that returns a single non-error: err is always nil.
decodeOut = func(vals []reflect.Value) (interface{}, error) {
return vals[0].Interface(), nil
}
}
default:
// A function that returns a value and an error.
decodeOut = func(vals []reflect.Value) (interface{}, error) {
out, oerr := vals[0].Interface(), vals[1].Interface()
if oerr != nil {
return nil, oerr.(error)
}
return out, nil
}
}
f := reflect.ValueOf(fn)
call := f.Call
if typ.IsVariadic() {
call = f.CallSlice
}
return Func(func(ctx context.Context, req *jrpc2.Request) (interface{}, error) {
rest, ierr := newinput(req)
if ierr != nil {
return nil, ierr
}
args := append([]reflect.Value{reflect.ValueOf(ctx)}, rest...)
return decodeOut(call(args))
}), nil
}
func checkFunctionType(fn interface{}) (reflect.Type, error) {
typ := reflect.TypeOf(fn)
if typ.Kind() != reflect.Func {
return nil, errors.New("not a function")
} else if np := typ.NumIn(); np == 0 || np > 2 {
return nil, errors.New("wrong number of parameters")
} else if no := typ.NumOut(); no < 1 || no > 2 {
return nil, errors.New("wrong number of results")
} else if typ.In(0) != ctxType {
return nil, errors.New("first parameter is not context.Context")
} else if no == 2 && typ.Out(1) != errType {
return nil, errors.New("result is not of type error")
}
return typ, nil
}
// Args is a wrapper that decodes an array of positional parameters into
// concrete locations.
//
// Unmarshaling a JSON value into an Args value v succeeds if the JSON encodes
// an array with length len(v), and unmarshaling each subvalue i into the
// corresponding v[i] succeeds. As a special case, if v[i] == nil the
// corresponding value is discarded.
//
// Marshaling an Args value v into JSON succeeds if each element of the slice
// is JSON marshalable, and yields a JSON array of length len(v) containing the
// JSON values corresponding to the elements of v.
//
// Usage example:
//
// func Handler(ctx context.Context, req *jrpc2.Request) (interface{}, error) {
// var x, y int
// var s string
//
// if err := req.UnmarshalParams(&handler.Args{&x, &y, &s}); err != nil {
// return nil, err
// }
// // do useful work with x, y, and s
// }
//
type Args []interface{}
// UnmarshalJSON supports JSON unmarshaling for a.
func (a Args) UnmarshalJSON(data []byte) error {
var elts []json.RawMessage
if err := json.Unmarshal(data, &elts); err != nil {
return fmt.Errorf("decoding args: %w", err)
} else if len(elts) != len(a) {
return fmt.Errorf("wrong number of args (got %d, want %d)", len(elts), len(a))
}
for i, elt := range elts {
if a[i] == nil {
continue
} else if err := json.Unmarshal(elt, a[i]); err != nil {
return fmt.Errorf("decoding argument %d: %w", i+1, err)
}
}
return nil
}
// MarshalJSON supports JSON marshaling for a.
func (a Args) MarshalJSON() ([]byte, error) {
if len(a) == 0 {
return []byte(`[]`), nil
}
return json.Marshal([]interface{}(a))
}
// Obj is a wrapper that maps object fields into concrete locations.
//
// Unmarshaling a JSON text into an Obj value v succeeds if the JSON encodes an
// object, and unmarshaling the value for each key k of the object into v[k]
// succeeds. If k does not exist in v, it is ignored.
//
// Marshaling an Obj into JSON works as for an ordinary map.
type Obj map[string]interface{}
// UnmarshalJSON supports JSON unmarshaling into o.
func (o Obj) UnmarshalJSON(data []byte) error {
var base map[string]json.RawMessage
if err := json.Unmarshal(data, &base); err != nil {
return fmt.Errorf("decoding object: %v", err)
}
for key, val := range base {
arg, ok := o[key]
if !ok {
continue
} else if err := json.Unmarshal(val, arg); err != nil {
return fmt.Errorf("decoding %q: %v", key, err)
}
}
return nil
}