338 lines
11 KiB
Go
Raw Normal View History

2021-11-08 16:39:17 +00:00
//go:build !noasm && !appengine && !gccgo
// +build !noasm,!appengine,!gccgo
// Copyright 2015, Klaus Post, see LICENSE for details.
// Copyright 2019, Minio, Inc.
package reedsolomon
import (
"sync"
)
//go:noescape
func _galMulAVX512Parallel81(in, out [][]byte, matrix *[matrixSize81]byte, addTo bool)
//go:noescape
func _galMulAVX512Parallel82(in, out [][]byte, matrix *[matrixSize82]byte, addTo bool)
//go:noescape
func _galMulAVX512Parallel84(in, out [][]byte, matrix *[matrixSize84]byte, addTo bool)
const (
dimIn = 8 // Number of input rows processed simultaneously
dimOut81 = 1 // Number of output rows processed simultaneously for x1 routine
dimOut82 = 2 // Number of output rows processed simultaneously for x2 routine
dimOut84 = 4 // Number of output rows processed simultaneously for x4 routine
matrixSize81 = (16 + 16) * dimIn * dimOut81 // Dimension of slice of matrix coefficient passed into x1 routine
matrixSize82 = (16 + 16) * dimIn * dimOut82 // Dimension of slice of matrix coefficient passed into x2 routine
matrixSize84 = (16 + 16) * dimIn * dimOut84 // Dimension of slice of matrix coefficient passed into x4 routine
)
// Construct block of matrix coefficients for single output row in parallel
func setupMatrix81(matrixRows [][]byte, inputOffset, outputOffset int, matrix *[matrixSize81]byte) {
offset := 0
for c := inputOffset; c < inputOffset+dimIn; c++ {
for iRow := outputOffset; iRow < outputOffset+dimOut81; iRow++ {
if c < len(matrixRows[iRow]) {
coeff := matrixRows[iRow][c]
copy(matrix[offset*32:], mulTableLow[coeff][:])
copy(matrix[offset*32+16:], mulTableHigh[coeff][:])
} else {
// coefficients not used for this input shard (so null out)
v := matrix[offset*32 : offset*32+32]
for i := range v {
v[i] = 0
}
}
offset += dimIn
if offset >= dimIn*dimOut81 {
offset -= dimIn*dimOut81 - 1
}
}
}
}
// Construct block of matrix coefficients for 2 output rows in parallel
func setupMatrix82(matrixRows [][]byte, inputOffset, outputOffset int, matrix *[matrixSize82]byte) {
offset := 0
for c := inputOffset; c < inputOffset+dimIn; c++ {
for iRow := outputOffset; iRow < outputOffset+dimOut82; iRow++ {
if c < len(matrixRows[iRow]) {
coeff := matrixRows[iRow][c]
copy(matrix[offset*32:], mulTableLow[coeff][:])
copy(matrix[offset*32+16:], mulTableHigh[coeff][:])
} else {
// coefficients not used for this input shard (so null out)
v := matrix[offset*32 : offset*32+32]
for i := range v {
v[i] = 0
}
}
offset += dimIn
if offset >= dimIn*dimOut82 {
offset -= dimIn*dimOut82 - 1
}
}
}
}
// Construct block of matrix coefficients for 4 output rows in parallel
func setupMatrix84(matrixRows [][]byte, inputOffset, outputOffset int, matrix *[matrixSize84]byte) {
offset := 0
for c := inputOffset; c < inputOffset+dimIn; c++ {
for iRow := outputOffset; iRow < outputOffset+dimOut84; iRow++ {
if c < len(matrixRows[iRow]) {
coeff := matrixRows[iRow][c]
copy(matrix[offset*32:], mulTableLow[coeff][:])
copy(matrix[offset*32+16:], mulTableHigh[coeff][:])
} else {
// coefficients not used for this input shard (so null out)
v := matrix[offset*32 : offset*32+32]
for i := range v {
v[i] = 0
}
}
offset += dimIn
if offset >= dimIn*dimOut84 {
offset -= dimIn*dimOut84 - 1
}
}
}
}
// Invoke AVX512 routine for single output row in parallel
func galMulAVX512Parallel81(in, out [][]byte, matrixRows [][]byte, inputOffset, outputOffset, start, stop int, matrix81 *[matrixSize81]byte) {
done := stop - start
if done <= 0 {
return
}
inputEnd := inputOffset + dimIn
if inputEnd > len(in) {
inputEnd = len(in)
}
outputEnd := outputOffset + dimOut81
if outputEnd > len(out) {
outputEnd = len(out)
}
// We know the max size, alloc temp array.
var inTmp [dimIn][]byte
for i, v := range in[inputOffset:inputEnd] {
inTmp[i] = v[start:stop]
}
var outTmp [dimOut81][]byte
for i, v := range out[outputOffset:outputEnd] {
outTmp[i] = v[start:stop]
}
addTo := inputOffset != 0 // Except for the first input column, add to previous results
_galMulAVX512Parallel81(inTmp[:inputEnd-inputOffset], outTmp[:outputEnd-outputOffset], matrix81, addTo)
done = start + ((done >> 6) << 6)
if done < stop {
galMulAVX512LastInput(inputOffset, inputEnd, outputOffset, outputEnd, matrixRows, done, stop, out, in)
}
}
// Invoke AVX512 routine for 2 output rows in parallel
func galMulAVX512Parallel82(in, out [][]byte, matrixRows [][]byte, inputOffset, outputOffset, start, stop int, matrix82 *[matrixSize82]byte) {
done := stop - start
if done <= 0 {
return
}
inputEnd := inputOffset + dimIn
if inputEnd > len(in) {
inputEnd = len(in)
}
outputEnd := outputOffset + dimOut82
if outputEnd > len(out) {
outputEnd = len(out)
}
// We know the max size, alloc temp array.
var inTmp [dimIn][]byte
for i, v := range in[inputOffset:inputEnd] {
inTmp[i] = v[start:stop]
}
var outTmp [dimOut82][]byte
for i, v := range out[outputOffset:outputEnd] {
outTmp[i] = v[start:stop]
}
addTo := inputOffset != 0 // Except for the first input column, add to previous results
_galMulAVX512Parallel82(inTmp[:inputEnd-inputOffset], outTmp[:outputEnd-outputOffset], matrix82, addTo)
done = start + ((done >> 6) << 6)
if done < stop {
galMulAVX512LastInput(inputOffset, inputEnd, outputOffset, outputEnd, matrixRows, done, stop, out, in)
}
}
// Invoke AVX512 routine for 4 output rows in parallel
func galMulAVX512Parallel84(in, out [][]byte, matrixRows [][]byte, inputOffset, outputOffset, start, stop int, matrix84 *[matrixSize84]byte) {
done := stop - start
if done <= 0 {
return
}
inputEnd := inputOffset + dimIn
if inputEnd > len(in) {
inputEnd = len(in)
}
outputEnd := outputOffset + dimOut84
if outputEnd > len(out) {
outputEnd = len(out)
}
// We know the max size, alloc temp array.
var inTmp [dimIn][]byte
for i, v := range in[inputOffset:inputEnd] {
inTmp[i] = v[start:stop]
}
var outTmp [dimOut84][]byte
for i, v := range out[outputOffset:outputEnd] {
outTmp[i] = v[start:stop]
}
addTo := inputOffset != 0 // Except for the first input column, add to previous results
_galMulAVX512Parallel84(inTmp[:inputEnd-inputOffset], outTmp[:outputEnd-outputOffset], matrix84, addTo)
done = start + ((done >> 6) << 6)
if done < stop {
galMulAVX512LastInput(inputOffset, inputEnd, outputOffset, outputEnd, matrixRows, done, stop, out, in)
}
}
func galMulAVX512LastInput(inputOffset int, inputEnd int, outputOffset int, outputEnd int, matrixRows [][]byte, done int, stop int, out [][]byte, in [][]byte) {
for c := inputOffset; c < inputEnd; c++ {
for iRow := outputOffset; iRow < outputEnd; iRow++ {
if c < len(matrixRows[iRow]) {
mt := mulTable[matrixRows[iRow][c]][:256]
for i := done; i < stop; i++ {
if c == 0 { // only set value for first input column
out[iRow][i] = mt[in[c][i]]
} else { // and add for all others
out[iRow][i] ^= mt[in[c][i]]
}
}
}
}
}
}
// Perform the same as codeSomeShards, but taking advantage of
// AVX512 parallelism for up to 4x faster execution as compared to AVX2
func (r *reedSolomon) codeSomeShardsAvx512(matrixRows, inputs, outputs [][]byte, outputCount, byteCount int) {
// Process using no goroutines
start, end := 0, r.o.perRound
if end > byteCount {
end = byteCount
}
for start < byteCount {
matrix84 := [matrixSize84]byte{}
matrix82 := [matrixSize82]byte{}
matrix81 := [matrixSize81]byte{}
outputRow := 0
// First process (multiple) batches of 4 output rows in parallel
if outputRow+dimOut84 <= outputCount {
for ; outputRow+dimOut84 <= outputCount; outputRow += dimOut84 {
for inputRow := 0; inputRow < len(inputs); inputRow += dimIn {
setupMatrix84(matrixRows, inputRow, outputRow, &matrix84)
galMulAVX512Parallel84(inputs, outputs, matrixRows, inputRow, outputRow, start, end, &matrix84)
}
}
}
// Then process a (single) batch of 2 output rows in parallel
if outputRow+dimOut82 <= outputCount {
for inputRow := 0; inputRow < len(inputs); inputRow += dimIn {
setupMatrix82(matrixRows, inputRow, outputRow, &matrix82)
galMulAVX512Parallel82(inputs, outputs, matrixRows, inputRow, outputRow, start, end, &matrix82)
}
outputRow += dimOut82
}
// Lastly, we may have a single output row left (for uneven parity)
if outputRow < outputCount {
for inputRow := 0; inputRow < len(inputs); inputRow += dimIn {
setupMatrix81(matrixRows, inputRow, outputRow, &matrix81)
galMulAVX512Parallel81(inputs, outputs, matrixRows, inputRow, outputRow, start, end, &matrix81)
}
}
start = end
end += r.o.perRound
if end > byteCount {
end = byteCount
}
}
}
// Perform the same as codeSomeShards, but taking advantage of
// AVX512 parallelism for up to 4x faster execution as compared to AVX2
func (r *reedSolomon) codeSomeShardsAvx512P(matrixRows, inputs, outputs [][]byte, outputCount, byteCount int) {
var wg sync.WaitGroup
do := byteCount / r.o.maxGoroutines
if do < r.o.minSplitSize {
do = r.o.minSplitSize
}
// Make sizes divisible by 64
do = (do + 63) & (^63)
start := 0
for start < byteCount {
if start+do > byteCount {
do = byteCount - start
}
wg.Add(1)
go func(grStart, grStop int) {
start, stop := grStart, grStart+r.o.perRound
if stop > grStop {
stop = grStop
}
// Loop for each round.
matrix84 := [matrixSize84]byte{}
matrix82 := [matrixSize82]byte{}
matrix81 := [matrixSize81]byte{}
for start < grStop {
outputRow := 0
// First process (multiple) batches of 4 output rows in parallel
if outputRow+dimOut84 <= outputCount {
// 1K matrix buffer
for ; outputRow+dimOut84 <= outputCount; outputRow += dimOut84 {
for inputRow := 0; inputRow < len(inputs); inputRow += dimIn {
setupMatrix84(matrixRows, inputRow, outputRow, &matrix84)
galMulAVX512Parallel84(inputs, outputs, matrixRows, inputRow, outputRow, start, stop, &matrix84)
}
}
}
// Then process a (single) batch of 2 output rows in parallel
if outputRow+dimOut82 <= outputCount {
// 512B matrix buffer
for inputRow := 0; inputRow < len(inputs); inputRow += dimIn {
setupMatrix82(matrixRows, inputRow, outputRow, &matrix82)
galMulAVX512Parallel82(inputs, outputs, matrixRows, inputRow, outputRow, start, stop, &matrix82)
}
outputRow += dimOut82
}
// Lastly, we may have a single output row left (for uneven parity)
if outputRow < outputCount {
for inputRow := 0; inputRow < len(inputs); inputRow += dimIn {
setupMatrix81(matrixRows, inputRow, outputRow, &matrix81)
galMulAVX512Parallel81(inputs, outputs, matrixRows, inputRow, outputRow, start, stop, &matrix81)
}
}
start = stop
stop += r.o.perRound
if stop > grStop {
stop = grStop
}
}
wg.Done()
}(start, start+do)
start += do
}
wg.Wait()
}