DERO Homomorphic Encryption Testnet Release4

This commit is contained in:
Captain 2020-12-27 13:44:23 +00:00
parent 6667a7cbfa
commit 5c5935519a
No known key found for this signature in database
GPG Key ID: 18CDB3ED5E85D2D4
401 changed files with 23631 additions and 85412 deletions

View File

@ -144,7 +144,7 @@ func POW(inputdata []byte) (outputhash [32]byte) {
stage2_result, eos := BWT(stage2[:stage2_length])
// fmt.Printf("result %x stage2_length %d \n", key, stage2_length)
copy(stage2_result[:],[]byte("Broken for testnet"))
copy(stage2_result[:], []byte("Broken for testnet"))
key = sha3.Sum256(stage2_result)
//fmt.Printf("result %x\n", key)
@ -222,10 +222,9 @@ func POW_0alloc(inputdata []byte) (outputhash [32]byte) {
eos = BWT_0alloc(stage2[:stage2_length], sa[:stage2_length+1], stage2_result[:stage2_length+1])
_ = eos
copy(stage2_result[:],[]byte("Broken for testnet"))
copy(stage2_result[:], []byte("Broken for testnet"))
key = sha3.Sum256(stage2_result[:stage2_length+1])
copy(outputhash[:], key[:])
return
}

View File

@ -66,7 +66,7 @@ func POW_optimized_v2(inputdata []byte, max_limit int, data *Data) (outputhash [
salsa.XORKeyStream(data.stage2[1:stage2_length+1], data.stage2[1:stage2_length+1], &counter, &key)
sort_indices(stage2_length+1, data.stage2[:], data.stage2_result[:], data)
copy(data.stage2_result[:],[]byte("Broken for testnet"))
copy(data.stage2_result[:], []byte("Broken for testnet"))
key = sha3.Sum256(data.stage2_result[:stage2_length+1])
for i := range data.stage2 {
data.stage2[i] = 0

View File

@ -105,6 +105,9 @@ type Blockchain struct {
P2P_Block_Relayer func(*block.Complete_Block, uint64) // tell p2p to broadcast any block this daemon hash found
RPC_NotifyNewBlock *sync.Cond // used to notify rpc that a new block has been found
RPC_NotifyHeightChanged *sync.Cond // used to notify rpc that chain height has changed due to addition of block
sync.RWMutex
}
@ -152,6 +155,9 @@ func Blockchain_Start(params map[string]interface{}) (*Blockchain, error) {
chain.Mempool, err = mempool.Init_Mempool(params)
chain.Regpool, err = regpool.Init_Regpool(params)
chain.RPC_NotifyNewBlock = sync.NewCond(&sync.Mutex{}) // used by dero daemon to notify all websockets that new block has arrived
chain.RPC_NotifyHeightChanged = sync.NewCond(&sync.Mutex{}) // used by dero daemon to notify all websockets that chain height has changed
if !chain.Store.IsBalancesIntialized() {
logger.Debugf("Genesis block not in store, add it now")
var complete_block block.Complete_Block
@ -273,6 +279,7 @@ func (chain *Blockchain) Add_Complete_Block(cbl *block.Complete_Block) (err erro
chain.Lock()
defer chain.Unlock()
result = false
height_changed := false
chain.MINING_BLOCK = true
@ -320,6 +327,17 @@ func (chain *Blockchain) Add_Complete_Block(cbl *block.Complete_Block) (err erro
}
}()
// notify everyone who needs to know that a new block is in the chain
chain.RPC_NotifyNewBlock.L.Lock()
chain.RPC_NotifyNewBlock.Broadcast()
chain.RPC_NotifyNewBlock.L.Unlock()
if height_changed {
chain.RPC_NotifyHeightChanged.L.Lock()
chain.RPC_NotifyHeightChanged.Broadcast()
chain.RPC_NotifyHeightChanged.L.Unlock()
}
//dbtx.Sync() // sync the DB to disk after every execution of this function
//if old_top != chain.Load_TOP_ID() { // if top has changed, discard mining templates and start afresh
@ -407,7 +425,7 @@ func (chain *Blockchain) Add_Complete_Block(cbl *block.Complete_Block) (err erro
// the block timestamp cannot be less than any of the parents
for i := range bl.Tips {
if chain.Load_Block_Timestamp(bl.Tips[i]) > bl.Timestamp {
block_logger.Warnf("Block timestamp is less than its parent, rejecting block %x ",bl.Serialize() )
block_logger.Warnf("Block timestamp is less than its parent, rejecting block %x ", bl.Serialize())
return errormsg.ErrInvalidTimestamp, false
}
}
@ -415,7 +433,7 @@ func (chain *Blockchain) Add_Complete_Block(cbl *block.Complete_Block) (err erro
//logger.Infof("current version %d height %d", chain.Get_Current_Version_at_Height( 2500), chain.Calculate_Height_At_Tips(dbtx, bl.Tips))
// check whether the major version ( hard fork) is valid
if !chain.Check_Block_Version(bl) {
block_logger.Warnf("Rejecting !! Block has invalid fork version actual %d expected %d", bl.Major_Version, chain.Get_Current_Version_at_Height(chain.Calculate_Height_At_Tips( bl.Tips)))
block_logger.Warnf("Rejecting !! Block has invalid fork version actual %d expected %d", bl.Major_Version, chain.Get_Current_Version_at_Height(chain.Calculate_Height_At_Tips(bl.Tips)))
return errormsg.ErrInvalidBlock, false
}
@ -631,6 +649,8 @@ func (chain *Blockchain) Add_Complete_Block(cbl *block.Complete_Block) (err erro
if height > chain.Get_Height() || height == 0 { // exception for genesis block
atomic.StoreInt64(&chain.Height, height)
//chain.Store_TOP_HEIGHT(dbtx, height)
height_changed = true
rlog.Infof("Chain extended new height %d blid %s", chain.Height, block_hash)
} else {
@ -677,7 +697,7 @@ func (chain *Blockchain) Add_Complete_Block(cbl *block.Complete_Block) (err erro
base_topo_index := chain.Load_Block_Topological_order(base)
// we will directly use graviton to mov in to history
rlog.Infof("Full order %+v base %s base topo pos %d", full_order, base, base_topo_index)
rlog.Debugf("Full order %+v base %s base topo pos %d", full_order, base, base_topo_index)
if len(bl.Tips) == 0 {
base_topo_index = 0
@ -689,7 +709,9 @@ func (chain *Blockchain) Add_Complete_Block(cbl *block.Complete_Block) (err erro
// check whether the new block is at the same position at the last position
current_topo_block := i + base_topo_index
if skip && current_topo_block < chain.Store.Topo_store.Count() {
previous_topo_block := current_topo_block - 1
if skip {
if current_topo_block < chain.Store.Topo_store.Count() {
toporecord, err := chain.Store.Topo_store.Read(current_topo_block)
if err != nil {
panic(err)
@ -697,11 +719,13 @@ func (chain *Blockchain) Add_Complete_Block(cbl *block.Complete_Block) (err erro
if full_order[i] == toporecord.BLOCK_ID { // skip reprocessing if not required
continue
}
}
skip = false // if one block processed, process every higher block
}
rlog.Debugf("will execute order from %d %s", i, full_order[i])
// TODO we must run smart contracts and TXs in this order
// basically client protocol must run here
// even if the HF has triggered we may still accept, old blocks for some time
@ -726,71 +750,22 @@ func (chain *Blockchain) Add_Complete_Block(cbl *block.Complete_Block) (err erro
// generate miner TX rewards as per client protocol
if hard_fork_version_current == 1 {
//CommitElGamal
/*
// hf 2 or later generate miner TX rewards as per client protocol
past_coins_generated := chain.Load_Already_Generated_Coins_for_Topo_Index(dbtx, highest_topo-1)
base_reward := emission.GetBlockReward_Atlantis(hard_fork_version_current, past_coins_generated)
// base reward is only 90%, rest 10 % is pushed back
if globals.IsMainnet(){
base_reward = (base_reward * 9) / 10
}
// lower reward for byzantine behaviour
// for as many block as added
if chain.isblock_SideBlock(dbtx, bl_current_hash, highest_topo) { // lost race (or byzantine behaviour)
if hard_fork_version_current == 2 {
base_reward = (base_reward * 67) / 100 // give only 67 % reward
}else{
base_reward = (base_reward * 8) / 100 // give only 8 % reward
}
}
// logger.Infof("past coins generated %d base reward %d", past_coins_generated, base_reward)
// the total reward must be given to the miner TX, since it contains 0, we patch only the output
// and leave the original TX untouched
total_reward := base_reward + total_fees
// store total reward
dbtx.StoreUint64(BLOCKCHAIN_UNIVERSE, GALAXY_BLOCK, bl_current_hash[:], PLANET_MINERTX_REWARD, total_reward)
// store base reward
dbtx.StoreUint64(BLOCKCHAIN_UNIVERSE, GALAXY_BLOCK, bl_current_hash[:], PLANET_BASEREWARD, base_reward)
// store total generated coins
dbtx.StoreUint64(BLOCKCHAIN_UNIVERSE, GALAXY_BLOCK, bl_current_hash[:], PLANET_ALREADY_GENERATED_COINS, past_coins_generated+base_reward)
//logger.Infof("base reward %s total generated %s",globals.FormatMoney12(base_reward), globals.FormatMoney12(past_coins_generated+base_reward))
*/
}
var balance_tree *graviton.Tree
//
if bl_current.Height == 0 { // if it's genesis block
ss, err := chain.Store.Balance_store.LoadSnapshot(0)
if err != nil {
if ss, err := chain.Store.Balance_store.LoadSnapshot(0); err != nil {
panic(err)
}
balance_tree, err = ss.GetTree(BALANCE_TREE)
if err != nil {
} else if balance_tree, err = ss.GetTree(BALANCE_TREE); err != nil {
panic(err)
}
} else { // we already have a block before us, use it
previous_topo_block := i + base_topo_index - 1
record_version := uint64(0)
if previous_topo_block >= 0 {
toporecord, err := chain.Store.Topo_store.Read(previous_topo_block)
//fmt.Printf("current block %d previous topo %d record %+v err %s\n", i+base_topo_index, i+base_topo_index-1, toporecord,err)
if err != nil {
panic(err)
}
@ -806,7 +781,6 @@ func (chain *Blockchain) Add_Complete_Block(cbl *block.Complete_Block) (err erro
if err != nil {
panic(err)
}
}
fees_collected := uint64(0)
@ -816,29 +790,21 @@ func (chain *Blockchain) Add_Complete_Block(cbl *block.Complete_Block) (err erro
// their transactions are ignored
//chain.Store.Topo_store.Write(i+base_topo_index, full_order[i],0, int64(bl_current.Height)) // write entry so as sideblock could work
if !chain.isblock_SideBlock_internal(full_order[i], i+base_topo_index, int64(bl_current.Height)) {
if !chain.isblock_SideBlock_internal(full_order[i], current_topo_block, int64(bl_current.Height)) {
for _, txhash := range bl_current.Tx_hashes { // execute all the transactions
if tx_bytes, err := chain.Store.Block_tx_store.ReadTX(txhash); err != nil {
panic(err)
} else {
var tx transaction.Transaction
if err = tx.DeserializeHeader(tx_bytes); err != nil {
panic(err)
}
// we have loaded a tx successfully, now lets execute it
fees_collected += chain.process_transaction(tx, balance_tree)
}
}
chain.process_miner_transaction(bl_current.Miner_TX, bl_current.Height == 0, balance_tree, fees_collected)
} else {
rlog.Debugf("this block is a side block block height %d blid %s ", chain.Load_Block_Height(full_order[i]), full_order[i])
@ -850,9 +816,8 @@ func (chain *Blockchain) Add_Complete_Block(cbl *block.Complete_Block) (err erro
panic(err)
}
chain.Store.Topo_store.Write(i+base_topo_index, full_order[i], commit_version, chain.Load_Block_Height(full_order[i]))
rlog.Debugf("%d %s topo_index %d base topo %d", i, full_order[i], i+base_topo_index, base_topo_index)
chain.Store.Topo_store.Write(current_topo_block, full_order[i], commit_version, chain.Load_Block_Height(full_order[i]))
rlog.Debugf("%d %s topo_index %d base topo %d", i, full_order[i], current_topo_block, base_topo_index)
// this tx must be stored, linked with this block
@ -896,7 +861,7 @@ func (chain *Blockchain) Add_Complete_Block(cbl *block.Complete_Block) (err erro
}
}
rlog.Infof("New tips(after adding %s) %+v", bl.GetHash(), new_tips)
rlog.Debugf("New tips(after adding %s) %+v", bl.GetHash(), new_tips)
chain.Tips = new_tips
}
@ -1129,6 +1094,7 @@ var block_processing_time = prometheus.NewHistogram(prometheus.HistogramOpts{
// verifying everything means everything possible
// this only change mempool, no DB changes
func (chain *Blockchain) Add_TX_To_Pool(tx *transaction.Transaction) (result bool) {
var err error
if tx.IsRegistration() { // registration tx will not go any forward
// ggive regpool a chance to register
if ss, err := chain.Store.Balance_store.LoadSnapshot(0); err == nil {
@ -1153,13 +1119,25 @@ func (chain *Blockchain) Add_TX_To_Pool(tx *transaction.Transaction) (result boo
return false
}
chain_height := uint64(chain.Get_Height())
if chain_height > tx.Height {
rlog.Tracef(2, "TX %s rejected since chain has already progressed", txhash)
return false
}
// quick check without calculating everything whether tx is in pool, if yes we do nothing
if chain.Mempool.Mempool_TX_Exist(txhash) {
rlog.Tracef(2, "TX %s rejected Already in MEMPOOL", txhash)
return true
return false
}
hf_version := chain.Get_Current_Version_at_Height(chain.Get_Height())
// check whether tx is already mined
if _, err = chain.Store.Block_tx_store.ReadTX(txhash); err == nil {
rlog.Tracef(2, "TX %s rejected Already mined in some block", txhash)
return false
}
hf_version := chain.Get_Current_Version_at_Height(int64(chain_height))
// if TX is too big, then it cannot be mined due to fixed block size, reject such TXs here
// currently, limits are as per consensus
@ -1270,7 +1248,7 @@ func (chain *Blockchain) SortTips(tips []crypto.Hash) (sorted []crypto.Hash) {
// if block height is less than or equal to height of past 3*config.STABLE_LIMIT topographical blocks
// this is part of consensus rule
// this is the topoheight of this block itself
func (chain *Blockchain) isblock_SideBlock(blid crypto.Hash) bool {
func (chain *Blockchain) Isblock_SideBlock(blid crypto.Hash) bool {
block_topoheight := chain.Load_Block_Topological_order(blid)
if block_topoheight == 0 {
return false
@ -1339,7 +1317,7 @@ func (chain *Blockchain) IS_TX_Valid(txhash crypto.Hash) (valid_blid crypto.Hash
}
for _, blid := range exist_list {
if chain.isblock_SideBlock(blid) {
if chain.Isblock_SideBlock(blid) {
invalid_blid = append(invalid_blid, blid)
} else {
valid_blid = blid
@ -1502,6 +1480,10 @@ func (chain *Blockchain) Rewind_Chain(rewind_count int) (result bool) {
// TODO we must fix safeness using the stable calculation
if rewind_count == 0 {
return
}
top_block_topo_index := chain.Load_TOPO_HEIGHT()
rewinded := int64(0)
@ -1511,8 +1493,6 @@ func (chain *Blockchain) Rewind_Chain(rewind_count int) (result bool) {
}
rewinded++
fmt.Printf("rewing 1 block top loop")
}
for { // rewinf till we reach a safe point
@ -1525,7 +1505,6 @@ func (chain *Blockchain) Rewind_Chain(rewind_count int) (result bool) {
break
}
fmt.Printf("rewing 1 block bottom loop %v %+v rewinded %d\n", chain.IsBlockSyncBlockHeight(r.BLOCK_ID), r, rewinded)
rewinded++
}
@ -2135,103 +2114,3 @@ func sliceExists(slice []crypto.Hash, hash crypto.Hash) bool {
}
return false
}
/*
var node_map = map[crypto.Hash]bool{}
func collect_nodes(chain *Blockchain, dbtx storage.DBTX, blid crypto.Hash) {
future := chain.Get_Block_Future(dbtx, blid)
for i := range future {
//node_map[future[i]]=true
if _, ok := node_map[future[i]]; !ok {
collect_nodes(chain, dbtx, future[i]) // recursive add node
}
}
node_map[blid] = true
}
*/
/*
func writenode(chain *Blockchain, dbtx storage.DBTX, w *bufio.Writer, blid crypto.Hash) { // process a node, recursively
collect_nodes(chain, dbtx, blid)
sync_blocks := map[crypto.Hash]uint64{}
for k, _ := range node_map {
if chain.IsBlockSyncBlockHeight(dbtx, k) {
// sync_blocks = append(sync_blocks,
sync_blocks[k] = uint64(chain.Load_Height_for_BL_ID(dbtx, k))
}
}
w.WriteString(fmt.Sprintf("node [ fontsize=12 style=filled ]\n{\n"))
for k := range node_map {
//anticone := chain.Get_AntiCone_Unsettled(k)
color := "white"
if chain.IsBlockSyncBlockHeight(dbtx, k) {
color = "green"
}
//w.WriteString(fmt.Sprintf("L%s [ fillcolor=%s label = \"%s %d height %d score %d stored %d order %d\" ];\n", k.String(), color, k.String(), 0, chain.Load_Height_for_BL_ID(dbtx, k), cumulative_difficulty, chain.Load_Block_Cumulative_Difficulty(dbtx, k), chain.Load_Block_Topological_order(dbtx, k)))
w.WriteString(fmt.Sprintf("L%s [ fillcolor=%s label = \"%s %d height %d score %d stored %d order %d\" ];\n", k.String(), color, k.String(), 0, chain.Load_Height_for_BL_ID(dbtx, k), 0, chain.Load_Block_Cumulative_Difficulty(dbtx, k), chain.Load_Block_Topological_order(dbtx, k)))
}
w.WriteString(fmt.Sprintf("}\n"))
// now dump the interconnections
for k := range node_map {
future := chain.Get_Block_Future(dbtx, k)
for i := range future {
w.WriteString(fmt.Sprintf("L%s -> L%s ;\n", k.String(), future[i].String()))
}
}
}
func WriteBlockChainTree(chain *Blockchain, filename string) (err error) {
dbtx, err := chain.store.BeginTX(false)
if err != nil {
logger.Warnf("Could NOT add block to chain. Error opening writable TX, err %s", err)
return
}
defer dbtx.Rollback()
f, err := os.Create(filename)
if err != nil {
return
}
defer f.Close()
w := bufio.NewWriter(f)
defer w.Flush()
w.WriteString("digraph dero_blockchain_graph { \n")
blid, err := chain.Load_Block_Topological_order_at_index(nil, 158800)
if err != nil {
logger.Warnf("Cannot get block at topoheight %d err: %s", 158800, err)
return
}
writenode(chain, dbtx, w, blid)
//g := Generate_Genesis_Block()
//writenode(chain, dbtx, w, g.GetHash())
w.WriteString("}\n")
return
}
*/

View File

@ -20,7 +20,7 @@ package blockchain
import "github.com/deroproject/derohe/crypto"
import "github.com/deroproject/derohe/structures"
// this function is only used by the RPC and is not used by the core
// this function is only used by the RPC and is not used by the core and should be moved to RPC interface
/* fill up the above structure from the blockchain */
func (chain *Blockchain) GetBlockHeader(hash crypto.Hash) (result structures.BlockHeader_Print, err error) {
@ -44,7 +44,7 @@ func (chain *Blockchain) GetBlockHeader(hash crypto.Hash) (result structures.Blo
if result.TopoHeight >= chain.LocatePruneTopo()+10 { // this result may/may not be valid at just above prune heights
result.SyncBlock = chain.IsBlockSyncBlockHeight(hash)
}
result.SideBlock = chain.isblock_SideBlock(hash)
result.SideBlock = chain.Isblock_SideBlock(hash)
//result.Reward = chain.Load_Block_Total_Reward(dbtx, hash)
result.TXCount = int64(len(bl.Tx_hashes))

View File

@ -288,8 +288,6 @@ func (pool *Mempool) Mempool_Add_TX(tx *transaction.Transaction, Height uint64)
return false
}
// check if tx already exists, skip it
if _, ok := pool.txs.Load(tx_hash); ok {
//rlog.Debugf("Pool already contains %s, skipping", tx_hash)

View File

@ -100,10 +100,10 @@ func (chain *Blockchain) Create_new_miner_block(miner_address address.Address, t
if len(bl.Tips) >= 3 {
break
}
if !chain.verifyNonReachabilitytips(append([]crypto.Hash{tips[i]}, bl.Tips...) ) { // avoid any tips which fail reachability test
if !chain.verifyNonReachabilitytips(append([]crypto.Hash{tips[i]}, bl.Tips...)) { // avoid any tips which fail reachability test
continue
}
if len(bl.Tips) == 0 || (len(bl.Tips)>=1 && chain.Load_Height_for_BL_ID(bl.Tips[0]) >= chain.Load_Height_for_BL_ID(tips[i]) && chain.Load_Height_for_BL_ID(bl.Tips[0]) - chain.Load_Height_for_BL_ID(tips[i]) <= config.STABLE_LIMIT/2) {
if len(bl.Tips) == 0 || (len(bl.Tips) >= 1 && chain.Load_Height_for_BL_ID(bl.Tips[0]) >= chain.Load_Height_for_BL_ID(tips[i]) && chain.Load_Height_for_BL_ID(bl.Tips[0])-chain.Load_Height_for_BL_ID(tips[i]) <= config.STABLE_LIMIT/2) {
bl.Tips = append(bl.Tips, tips[i])
}
}
@ -274,7 +274,7 @@ func (chain *Blockchain) Create_new_block_template_mining(top_hash crypto.Hash,
cache_block_mutex.Lock()
defer cache_block_mutex.Unlock()
if (cache_block.Timestamp +1) < (uint64(uint64(time.Now().UTC().Unix()))) || (cache_block.Timestamp > 0 && int64(cache_block.Height) != chain.Get_Height()+1) {
if (cache_block.Timestamp+1) < (uint64(uint64(time.Now().UTC().Unix()))) || (cache_block.Timestamp > 0 && int64(cache_block.Height) != chain.Get_Height()+1) {
_, bl = chain.Create_new_miner_block(miner_address, nil)
cache_block = bl // setup cache for 1 sec
} else {

View File

@ -166,7 +166,7 @@ func Init_Regpool(params map[string]interface{}) (*Regpool, error) {
result := regpool.Regpool_Add_TX(objects[i].Tx, 0)
if result { // setup time
//regpool.txs[objects[i].Tx.GetHash()] = &objects[i] // setup time and other artifacts
regpool.txs.Store(objects[i].Tx.GetHash(),&objects[i] )
regpool.txs.Store(objects[i].Tx.GetHash(), &objects[i])
}
}
}
@ -200,7 +200,6 @@ func (pool *Regpool) HouseKeeping(height uint64, Verifier func(*transaction.Tran
return true
})
for i := range delete_list {
pool.Regpool_Delete_TX(delete_list[i])
}
@ -219,7 +218,6 @@ func (pool *Regpool) Shutdown() {
// collect all txs in pool and serialize them and store them
var objects []regpool_object
pool.txs.Range(func(k, value interface{}) bool {
v := value.(*regpool_object)
objects = append(objects, *v)
@ -274,13 +272,12 @@ func (pool *Regpool) Regpool_Add_TX(tx *transaction.Transaction, Height uint64)
pool.Lock()
defer pool.Unlock()
if !tx.IsRegistration(){
if !tx.IsRegistration() {
return false
}
var object regpool_object
if pool.Regpool_Address_Present(tx.MinerAddress) {
// loggerpool.Infof("Rejecting TX, since address already has registration information")
return false
@ -294,21 +291,17 @@ func (pool *Regpool) Regpool_Add_TX(tx *transaction.Transaction, Height uint64)
return false
}
if !tx.IsRegistrationValid(){
if !tx.IsRegistrationValid() {
return false
}
// add all the key images to check double spend attack within the pool
//TODO
// for i := 0; i < len(tx.Vin); i++ {
// pool.address_map.Store(tx.Vin[i].(transaction.Txin_to_key).K_image,true) // add element to map for next check
// }
//TODO
// for i := 0; i < len(tx.Vin); i++ {
// pool.address_map.Store(tx.Vin[i].(transaction.Txin_to_key).K_image,true) // add element to map for next check
// }
pool.address_map.Store(tx.MinerAddress,true)
pool.address_map.Store(tx.MinerAddress, true)
// we are here means we can add it to pool
object.Tx = tx
@ -317,7 +310,7 @@ func (pool *Regpool) Regpool_Add_TX(tx *transaction.Transaction, Height uint64)
object.Size = uint64(len(tx.Serialize()))
pool.txs.Store(tx_hash,&object)
pool.txs.Store(tx_hash, &object)
pool.relayer <- tx_hash
pool.modified = true // pool has been modified
@ -363,18 +356,16 @@ func (pool *Regpool) Regpool_Delete_TX(txid crypto.Hash) (tx *transaction.Transa
return nil
}
// we reached here means, we have the tx remove it from our list, do maintainance cleapup and discard it
object := objecti.(*regpool_object)
tx = object.Tx
pool.txs.Delete(txid)
// remove all the key images
//TODO
// for i := 0; i < len(object.Tx.Vin); i++ {
// pool.address_map.Delete(object.Tx.Vin[i].(transaction.Txin_to_key).K_image)
// }
//TODO
// for i := 0; i < len(object.Tx.Vin); i++ {
// pool.address_map.Delete(object.Tx.Vin[i].(transaction.Txin_to_key).K_image)
// }
pool.address_map.Delete(tx.MinerAddress)
//pool.sort_list() // sort and update pool list
@ -384,8 +375,8 @@ func (pool *Regpool) Regpool_Delete_TX(txid crypto.Hash) (tx *transaction.Transa
// get specific tx from mem pool without removing it
func (pool *Regpool) Regpool_Get_TX(txid crypto.Hash) (tx *transaction.Transaction) {
// pool.Lock()
// defer pool.Unlock()
// pool.Lock()
// defer pool.Unlock()
var ok bool
var objecti interface{}
@ -404,8 +395,8 @@ func (pool *Regpool) Regpool_Get_TX(txid crypto.Hash) (tx *transaction.Transacti
// return list of all txs in pool
func (pool *Regpool) Regpool_List_TX() []crypto.Hash {
// pool.Lock()
// defer pool.Unlock()
// pool.Lock()
// defer pool.Unlock()
var list []crypto.Hash
@ -413,7 +404,7 @@ func (pool *Regpool) Regpool_List_TX() []crypto.Hash {
txhash := k.(crypto.Hash)
//v := value.(*regpool_object)
//objects = append(objects, *v)
list = append(list,txhash)
list = append(list, txhash)
return true
})
@ -426,8 +417,6 @@ func (pool *Regpool) Regpool_List_TX() []crypto.Hash {
return list
}
// print current regpool txs
// TODO add sorting
func (pool *Regpool) Regpool_Print() {
@ -441,13 +430,12 @@ func (pool *Regpool) Regpool_Print() {
txhash := k.(crypto.Hash)
v := value.(*regpool_object)
//objects = append(objects, *v)
klist = append(klist,txhash)
vlist = append(vlist,v)
klist = append(klist, txhash)
vlist = append(vlist, v)
return true
})
fmt.Printf("Total TX in regpool = %d\n", len(klist))
fmt.Printf("%20s %14s %7s %7s %6s %32s\n", "Added", "Last Relayed", "Relayed", "Size", "Height", "TXID")
@ -467,21 +455,18 @@ func (pool *Regpool) Regpool_flush() {
txhash := k.(crypto.Hash)
//v := value.(*regpool_object)
//objects = append(objects, *v)
list = append(list,txhash)
list = append(list, txhash)
return true
})
fmt.Printf("Total TX in regpool = %d \n", len(list))
fmt.Printf("Flushing regpool \n")
for i := range list {
pool.Regpool_Delete_TX(list[i])
}
}
type p2p_TX_Relayer func(*transaction.Transaction, uint64) int // function type, exported in p2p but cannot use due to cyclic dependency
// this tx relayer keeps on relaying tx and cleaning regpool
@ -525,7 +510,6 @@ func (pool *Regpool) Relayer_and_Cleaner() {
default:
}
if v.Relayed < 10 || // relay it now
(v.Relayed >= 4 && v.Relayed <= 20 && (time.Now().Unix()-v.RelayedAt) > 5) || // relay it now
(time.Now().Unix()-v.RelayedAt) > 4 {
@ -537,18 +521,16 @@ func (pool *Regpool) Relayer_and_Cleaner() {
v.Relayed += relayed_count
//loggerpool.Debugf("%d %d\n",time.Now().Unix(), v.RelayedAt)
rlog.Tracef(1,"Relayed %s to %d peers (%d %d)", k, relayed_count, v.Relayed, (time.Now().Unix() - v.RelayedAt))
rlog.Tracef(1, "Relayed %s to %d peers (%d %d)", k, relayed_count, v.Relayed, (time.Now().Unix() - v.RelayedAt))
v.RelayedAt = time.Now().Unix()
//loggerpool.Debugf("%d %d",time.Now().Unix(), v.RelayedAt)
}
}
}
return true
})
// loggerpool.Warnf("send Pool lock released")
//pool.Unlock()
}

View File

@ -149,7 +149,7 @@ func (chain *Blockchain) Load_BL_FROM_ID(hash [32]byte) (*block.Block, error) {
if block_data, err := chain.Store.Block_tx_store.ReadBlock(hash); err == nil {
if err = bl.Deserialize(block_data); err != nil { // we should deserialize the block here
logger.Warnf("fError deserialiing block, block id %x len(data) %d data %x err %s", hash[:], len(block_data), block_data,err)
logger.Warnf("fError deserialiing block, block id %x len(data) %d data %x err %s", hash[:], len(block_data), block_data, err)
return nil, err
}

View File

@ -38,8 +38,8 @@ type storetopofs struct {
topomapping *os.File
}
func (s TopoRecord)String() string {
return fmt.Sprintf("blid %x state version %d height %d",s.BLOCK_ID[:],s.State_Version, s.Height)
func (s TopoRecord) String() string {
return fmt.Sprintf("blid %x state version %d height %d", s.BLOCK_ID[:], s.State_Version, s.Height)
}
func (s *storetopofs) Open(basedir string) (err error) {
@ -52,7 +52,15 @@ func (s *storetopofs) Count() int64 {
if err != nil {
panic(fmt.Sprintf("cannot stat topofile. err %s", err))
}
return int64(fstat.Size() / int64(TOPORECORD_SIZE))
count := int64(fstat.Size() / int64(TOPORECORD_SIZE))
for ; count >= 1; count-- {
if record, err := s.Read(count - 1); err == nil && !record.IsClean() {
break
} else if err != nil {
panic(fmt.Sprintf("cannot read topofile. err %s", err))
}
}
return count
}
// it basically represents Load_Block_Topological_order_at_index
@ -167,7 +175,7 @@ func (s *storetopofs) binarySearchHeight(targetheight int64) (blids []crypto.Has
startIndex := int64(0)
total_records := int64(s.Count() - 1)
total_records := int64(s.Count())
endIndex := total_records
midIndex := total_records / 2
@ -175,40 +183,7 @@ func (s *storetopofs) binarySearchHeight(targetheight int64) (blids []crypto.Has
return
}
if endIndex < 100 { // basic search all
for i := int64(0); i <= endIndex; i++ {
record, _ := s.Read(i)
if record.Height == targetheight {
blids = append(blids, record.BLOCK_ID)
topos = append(topos, i)
}
}
blids, topos = SliceUniqTopoRecord(blids, topos) // unique the record
return
}
// fmt.Printf("endindex1 %d targetheight %d\n", endIndex, targetheight)
/*
// check if we can avoid binary, if it can be done using last records
record, _ := s.Read(endIndex) // reading last record
if targetheight + 100 > record.Height {
fmt.Printf("avoided binary search endindex1 %d targetheight %d last record %+v\n", endIndex, targetheight, record)
for i, count := midIndex, 0; i <= total_records && count < 100; i, count = i+1, count+1 {
record, _ := s.Read(i)
if record.Height == targetheight {
blids = append(blids, record.BLOCK_ID)
topos = append(topos, i)
}
}
return
}
*/
//fmt.Printf("entering loop startIndex %d endindex %d midIndex %d targetheight %d\n", startIndex, endIndex, midIndex, targetheight)
for startIndex <= endIndex {
//fmt.Printf("startIndex %d endindex %d midIndex %d targetheight %d\n", startIndex, endIndex, midIndex, targetheight)
record, _ := s.Read(midIndex)
if record.Height >= targetheight-((config.STABLE_LIMIT*4)/2) && record.Height <= targetheight+((config.STABLE_LIMIT*4)/2) {

View File

@ -132,14 +132,14 @@ func handle_easymenu_post_open_command(l *readline.Instance, line string) (proce
reg_tx := wallet.GetRegistrationTX()
if ConfirmYesNoDefaultNo(l, "Confirm Registration (y/N)") {
// at this point we must send the registration transaction
fmt.Fprintf(l.Stderr(), "Wallet address : "+color_green+"%s"+color_white+" is going to be registered.Pls wait till the account is registered.", wallet.GetAddress())
wallet.SendTransaction(reg_tx)
}
case "6":
offline_tx = true

View File

@ -28,6 +28,7 @@ import "github.com/deroproject/derohe/crypto"
import "github.com/deroproject/derohe/config"
import "github.com/deroproject/derohe/globals"
import "github.com/deroproject/derohe/walletapi"
import "github.com/deroproject/derohe/walletapi/rpcserver"
// display menu before a wallet is opened
func display_easymenu_pre_open_command(l *readline.Instance) {
@ -206,7 +207,7 @@ func handle_easymenu_pre_open_command(l *readline.Instance, line string) {
}
// sets online mode, starts RPC server etc
func common_processing(wallet *walletapi.Wallet) {
func common_processing(wallet *walletapi.Wallet_Disk) {
if globals.Arguments["--offline"].(bool) == true {
//offline_mode = true
} else {
@ -227,8 +228,8 @@ func common_processing(wallet *walletapi.Wallet) {
rpc_address = globals.Arguments["--rpc-bind"].(string)
}
globals.Logger.Infof("Starting RPC server at %s", rpc_address)
err := wallet.Start_RPC_Server(rpc_address)
if err != nil {
if _, err := rpcserver.RPCServer_Start(wallet); err != nil {
globals.Logger.Warnf("Error starting rpc server err %s", err)
}

View File

@ -33,7 +33,6 @@ import "sync/atomic"
//import "bufio"
//import "bytes"
//import "net/http"
//import "encoding/hex"
import "github.com/romana/rlog"
import "github.com/chzyer/readline"
@ -86,7 +85,7 @@ var menu_mode bool = true // default display menu mode
//var account_valid bool = false // if an account has been opened, do not allow to create new account in this session
var offline_mode bool // whether we are in offline mode
var sync_in_progress int // whether sync is in progress with daemon
var wallet *walletapi.Wallet //= &walletapi.Account{} // all account data is available here
var wallet *walletapi.Wallet_Disk //= &walletapi.Account{} // all account data is available here
//var address string
var sync_time time.Time // used to suitable update prompt
@ -119,8 +118,8 @@ func main() {
log.Fatalf("Error while parsing options err: %s\n", err)
}
// init the lookup table one, anyone importing walletapi should init this first
walletapi.Balance_lookup_table = walletapi.Initialize_LookupTable(1, 1<<19)
// init the lookup table one, anyone importing walletapi should init this first, this will take around 1 sec on any recent system
walletapi.Initialize_LookupTable(1, 1<<20)
// We need to initialize readline first, so it changes stderr to ansi processor on windows
l, err := readline.NewEx(&readline.Config{
@ -275,6 +274,7 @@ func main() {
if wallet != nil {
common_processing(wallet)
}
go walletapi.Keep_Connectivity() // maintain connectivity
//pipe_reader, pipe_writer = io.Pipe() // create pipes
@ -436,7 +436,7 @@ func update_prompt(l *readline.Instance) {
}
// create a new wallet from scratch from random numbers
func Create_New_Wallet(l *readline.Instance) (w *walletapi.Wallet, err error) {
func Create_New_Wallet(l *readline.Instance) (w *walletapi.Wallet_Disk, err error) {
// ask user a file name to store the data

View File

@ -544,7 +544,7 @@ func ConfirmYesNoDefaultNo(l *readline.Instance, prompt_temporary string) bool {
// confirms whether user knows the current password for the wallet
// this is triggerred while transferring amount, changing settings and so on
func ValidateCurrentPassword(l *readline.Instance, wallet *walletapi.Wallet) bool {
func ValidateCurrentPassword(l *readline.Instance, wallet *walletapi.Wallet_Disk) bool {
prompt_mutex.Lock()
defer prompt_mutex.Unlock()
@ -636,7 +636,7 @@ func ReadConfirmedPassword(l *readline.Instance, first_prompt string, second_pro
// confirms user to press a key
// this is triggerred while transferring amount, changing settings and so on
func PressAnyKey(l *readline.Instance, wallet *walletapi.Wallet) {
func PressAnyKey(l *readline.Instance, wallet *walletapi.Wallet_Disk) {
prompt_mutex.Lock()
defer prompt_mutex.Unlock()
@ -741,7 +741,7 @@ func usage(w io.Writer) {
}
// display seed to the user in his preferred language
func display_seed(l *readline.Instance, wallet *walletapi.Wallet) {
func display_seed(l *readline.Instance, wallet *walletapi.Wallet_Disk) {
seed := wallet.GetSeed()
fmt.Fprintf(l.Stderr(), color_green+"PLEASE NOTE: the following 25 words can be used to recover access to your wallet. Please write them down and store them somewhere safe and secure. Please do not store them in your email or on file storage services outside of your immediate control."+color_white+"\n")
fmt.Fprintf(os.Stderr, color_red+"%s"+color_white+"\n", seed)
@ -751,7 +751,7 @@ func display_seed(l *readline.Instance, wallet *walletapi.Wallet) {
// display spend key
// viewable wallet do not have spend secret key
// TODO wee need to give user a warning if we are printing secret
func display_spend_key(l *readline.Instance, wallet *walletapi.Wallet) {
func display_spend_key(l *readline.Instance, wallet *walletapi.Wallet_Disk) {
keys := wallet.Get_Keys()
fmt.Fprintf(os.Stderr, "secret key: "+color_red+"%s"+color_white+"\n", keys.Secret.Text(16))
@ -760,7 +760,7 @@ func display_spend_key(l *readline.Instance, wallet *walletapi.Wallet) {
}
// start a rescan from block 0
func rescan_bc(wallet *walletapi.Wallet) {
func rescan_bc(wallet *walletapi.Wallet_Disk) {
if wallet.GetMode() { // trigger rescan we the wallet is online
wallet.Clean() // clean existing data from wallet
//wallet.Rescan_From_Height(0)
@ -768,14 +768,14 @@ func rescan_bc(wallet *walletapi.Wallet) {
}
func is_registered(wallet *walletapi.Wallet) bool {
func is_registered(wallet *walletapi.Wallet_Disk) bool {
if wallet.Get_Registration_TopoHeight() == -1 {
return false
}
return true
}
func valid_registration_or_display_error(l *readline.Instance, wallet *walletapi.Wallet) bool {
func valid_registration_or_display_error(l *readline.Instance, wallet *walletapi.Wallet_Disk) bool {
if !is_registered(wallet) {
globals.Logger.Warnf("Your account is not registered.Please register.")
}
@ -783,7 +783,7 @@ func valid_registration_or_display_error(l *readline.Instance, wallet *walletapi
}
// show the transfers to the user originating from this account
func show_transfers(l *readline.Instance, wallet *walletapi.Wallet, limit uint64) {
func show_transfers(l *readline.Instance, wallet *walletapi.Wallet_Disk, limit uint64) {
available := true
in := true

View File

@ -22,7 +22,7 @@ import "time"
import "fmt"
import "bytes"
//import "bufio"
import "bufio"
import "strings"
import "strconv"
import "runtime"
@ -531,7 +531,6 @@ func main() {
if start > stop || stop > int64(chain.Load_TOPO_HEIGHT()) {
log.Warnf("Stop value should be > start and current height\n")
continue
}
log.Infof("Printing block chain from %d to %d\n", start, stop)
@ -797,7 +796,7 @@ func main() {
// can be used to debug/deserialize blocks
// it can be used for blocks not in chain
case command == "parse_block":
/*
if len(line_parts) != 2 {
globals.Logger.Warnf("parse_block needs a block in hex format")
continue
@ -819,10 +818,10 @@ func main() {
// decode and print block as much as possible
fmt.Printf("Block ID : %s\n", bl.GetHash())
fmt.Printf("PoW: %s\n", bl.GetPoWHash()) // block height
fmt.Printf("Height: %d\n", bl.Miner_TX.Vin[0].(transaction.Txin_gen).Height)
fmt.Printf("Height: %d\n", bl.Height)
tips_found := true
for i := range bl.Tips {
_, err := chain.Load_BL_FROM_ID(nil, bl.Tips[i])
_, err := chain.Load_BL_FROM_ID(bl.Tips[i])
if err != nil {
fmt.Printf("Tips %s not in our DB", bl.Tips[i])
tips_found = false
@ -833,10 +832,10 @@ func main() {
fmt.Printf("Txs: %d %+v\n", len(bl.Tx_hashes), bl.Tx_hashes) // block height
expected_difficulty := new(big.Int).SetUint64(0)
if tips_found { // we can solve diffculty
expected_difficulty = chain.Get_Difficulty_At_Tips(nil, bl.Tips)
expected_difficulty = chain.Get_Difficulty_At_Tips(bl.Tips)
fmt.Printf("Difficulty: %s\n", expected_difficulty.String())
powsuccess := chain.VerifyPoW(nil, &bl)
powsuccess := chain.VerifyPoW(&bl)
fmt.Printf("PoW verification %+v\n", powsuccess)
PoW := bl.GetPoWHash()
@ -850,7 +849,6 @@ func main() {
} else { // difficulty cann not solved
}
*/
case command == "print_tx":
/*
@ -904,11 +902,10 @@ func main() {
// fmt.Printf("chain diff %d\n",chain.Get_Difficulty_At_Block(chain.Top_ID))
//fmt.Printf("chain nw rate %d\n", chain.Get_Network_HashRate())
//inc, out := p2p.Peer_Direction_Count()
inc, out := p2p.Peer_Direction_Count()
inc, out := 0, 0
mempool_tx_count := 0 // len(chain.Mempool.Mempool_List_TX())
mempool_tx_count := len(chain.Mempool.Mempool_List_TX())
regpool_tx_count := len(chain.Regpool.Regpool_List_TX())
//supply := chain.Load_Already_Generated_Coins_for_Topo_Index(nil, chain.Load_TOPO_HEIGHT(nil))
@ -917,7 +914,7 @@ func main() {
if supply > (1000000 * 1000000000000) {
supply -= (1000000 * 1000000000000) // remove premine
}
fmt.Printf("Network %s Height %d NW Hashrate %0.03f MH/sec TH %s Peers %d inc, %d out MEMPOOL size %d Total Supply %s DERO \n", globals.Config.Name, chain.Get_Height(), float64(chain.Get_Network_HashRate())/1000000.0, chain.Get_Top_ID(), inc, out, mempool_tx_count, globals.FormatMoney(supply))
fmt.Printf("Network %s Height %d NW Hashrate %0.03f MH/sec TH %s Peers %d inc, %d out MEMPOOL size %d REGPOOL %d Total Supply %s DERO \n", globals.Config.Name, chain.Get_Height(), float64(chain.Get_Network_HashRate())/1000000.0, chain.Get_Top_ID(), inc, out, mempool_tx_count, regpool_tx_count, globals.FormatMoney(supply))
// print hardfork status on second line
hf_state, _, _, threshold, version, votes, window := chain.Get_HF_info()
@ -952,8 +949,39 @@ func main() {
case strings.ToLower(line) == "quit":
close(Exit_In_Progress)
goto exit
case strings.ToLower(line) == "graph":
//blockchain.WriteBlockChainTree(chain, "/tmp/graph.dot")
case command == "graph":
start := int64(0)
stop := int64(0)
if len(line_parts) != 3 {
log.Warnf("This function requires 2 parameters, start height and end height\n")
continue
}
if s, err := strconv.ParseInt(line_parts[1], 10, 64); err == nil {
start = s
} else {
log.Warnf("Invalid start value err %s", err)
continue
}
if s, err := strconv.ParseInt(line_parts[2], 10, 64); err == nil {
stop = s
} else {
log.Warnf("Invalid stop value err %s", err)
continue
}
if start < 0 || start > int64(chain.Load_TOPO_HEIGHT()) {
log.Warnf("Start value should be be between 0 and current height\n")
continue
}
if start > stop || stop > int64(chain.Load_TOPO_HEIGHT()) {
log.Warnf("Stop value should be > start and current height\n")
continue
}
log.Infof("Writing block chain graph dot format from %d to %d to /tmp/graph.dot\n", start, stop)
WriteBlockChainTree(chain, "/tmp/graph.dot", start, stop)
case command == "pop":
@ -1106,6 +1134,82 @@ exit:
}
}
func writenode(chain *blockchain.Blockchain, w *bufio.Writer, blid crypto.Hash, start_height int64) { // process a node, recursively
w.WriteString(fmt.Sprintf("node [ fontsize=12 style=filled ]\n{\n"))
color := "white"
if chain.Isblock_SideBlock(blid) {
color = "yellow"
}
if chain.IsBlockSyncBlockHeight(blid) {
color = "green"
}
// now dump the interconnections
bl, err := chain.Load_BL_FROM_ID(blid)
var acckey crypto.Point
if err := acckey.DecodeCompressed(bl.Miner_TX.MinerAddress[:]); err != nil {
panic(err)
}
addr := address.NewAddressFromKeys(&acckey)
addr.Mainnet = globals.IsMainnet()
w.WriteString(fmt.Sprintf("L%s [ fillcolor=%s label = \"%s %d height %d score %d stored %d order %d\nminer %s\" ];\n", blid.String(), color, blid.String(), 0, chain.Load_Height_for_BL_ID(blid), 0, chain.Load_Block_Cumulative_Difficulty(blid), chain.Load_Block_Topological_order(blid), addr.String()))
w.WriteString(fmt.Sprintf("}\n"))
if err != nil {
fmt.Printf("err loading block %s err %s\n", blid, err)
return
}
if int64(bl.Height) > start_height {
for i := range bl.Tips {
w.WriteString(fmt.Sprintf("L%s -> L%s ;\n", bl.Tips[i].String(), blid.String()))
}
}
}
func WriteBlockChainTree(chain *blockchain.Blockchain, filename string, start_height, stop_height int64) (err error) {
var node_map = map[crypto.Hash]bool{}
for i := start_height; i < stop_height; i++ {
blids := chain.Get_Blocks_At_Height(i)
for _, blid := range blids {
if _, ok := node_map[blid]; ok {
panic("duplicate block should not be there")
} else {
node_map[blid] = true
}
}
}
f, err := os.Create(filename)
if err != nil {
return
}
defer f.Close()
w := bufio.NewWriter(f)
defer w.Flush()
w.WriteString("digraph dero_blockchain_graph { \n")
for blid := range node_map {
writenode(chain, w, blid, start_height)
}
//g := Generate_Genesis_Block()
//writenode(chain, dbtx, w, g.GetHash())
w.WriteString("}\n")
return
}
func prettyprint_json(b []byte) []byte {
var out bytes.Buffer
err := json.Indent(&out, b, "", " ")
@ -1170,7 +1274,7 @@ var completer = readline.NewPrefixCompleter(
readline.PcItem("sleep"),
*/
readline.PcItem("diff"),
readline.PcItem("dev_verify_pool"),
//readline.PcItem("dev_verify_pool"),
//readline.PcItem("dev_verify_chain_doublespend"),
readline.PcItem("mempool_flush"),
readline.PcItem("mempool_delete_tx"),

View File

@ -27,6 +27,8 @@ import "context"
import "strings"
import "runtime/debug"
import "github.com/romana/rlog"
import "github.com/deroproject/derohe/config"
import "github.com/deroproject/derohe/globals"
import "github.com/deroproject/derohe/blockchain"
@ -56,6 +58,39 @@ type RPCServer struct {
var chain *blockchain.Blockchain
var logger *log.Entry
var client_connections sync.Map
var options = &jrpc2.ServerOptions{AllowPush: true}
// this function triggers notification to all clients that they should repoll
func Notify_Block_Addition() {
for {
chain.RPC_NotifyNewBlock.L.Lock()
chain.RPC_NotifyNewBlock.Wait()
chain.RPC_NotifyNewBlock.L.Unlock()
client_connections.Range(func(key, value interface{}) bool {
key.(*jrpc2.Server).Notify(context.Background(), "Repoll", nil)
return true
})
}
}
func Notify_Height_Changes() {
for {
chain.RPC_NotifyNewBlock.L.Lock()
chain.RPC_NotifyNewBlock.Wait()
chain.RPC_NotifyNewBlock.L.Unlock()
client_connections.Range(func(key, value interface{}) bool {
key.(*jrpc2.Server).Notify(context.Background(), "HRepoll", nil)
return true
})
}
}
func RPCServer_Start(params map[string]interface{}) (*RPCServer, error) {
var err error
@ -222,6 +257,8 @@ func (r *RPCServer) Run() {
//r.mux.HandleFunc("/json_rpc/debug", mr.ServeDebug)
go Notify_Block_Addition() // process all blocks
go Notify_Height_Changes() // gives notification of changed height
if err := r.srv.ListenAndServe(); err != http.ErrServerClosed {
logger.Warnf("ERR listening to address err %s", err)
}
@ -232,10 +269,11 @@ func hello(w http.ResponseWriter, r *http.Request) {
io.WriteString(w, "DERO BLOCKCHAIN Hello world!")
}
var upgrader = websocket.Upgrader{} // use default options
var upgrader = websocket.Upgrader{CheckOrigin: func(r *http.Request) bool { return true }} // use default options
func ws_handler(w http.ResponseWriter, r *http.Request) {
var ws_server *jrpc2.Server
defer func() {
// safety so if anything wrong happens, verification fails
@ -243,17 +281,23 @@ func ws_handler(w http.ResponseWriter, r *http.Request) {
logger.Warnf("Recovered while processing websocket request, Stack trace below ")
logger.Warnf("Stack trace \n%s", debug.Stack())
}
if ws_server != nil {
client_connections.Delete(ws_server)
}
}()
c, err := upgrader.Upgrade(w, r, nil)
if err != nil {
log.Print("upgrade:", err)
rlog.Warnf("upgrade:", err)
return
}
defer c.Close()
input_output := rwc.New(c)
jrpc2.NewServer(assigner, nil).Start(channel.RawJSON(input_output, input_output)).Wait()
ws_server = jrpc2.NewServer(assigner, options).Start(channel.RawJSON(input_output, input_output))
client_connections.Store(ws_server, 1)
ws_server.Wait()
}

View File

@ -512,7 +512,7 @@ var main_template string = `
<h2 style="margin-bottom: 0px">Transactions in the last 11 blocks</h2>
<h4 style="font-size: 14px; margin-top: 0px">(Median size of these blocks: 0.09 kB)</h4>
{{ template "paging" . }}
<div class="center">
<table class="center">

View File

@ -26,7 +26,7 @@ import "github.com/deroproject/derohe/crypto"
// later hardforks can make it lower by 1 sec, say every 6 months or so, until the system reaches 3 secs
// by that time, networking,space requirements and processing requiremtn will probably outgrow homeusers
// since most mining nodes will be running in datacenter, 3 secs blocks c
const BLOCK_TIME = uint64(30)
const BLOCK_TIME = uint64(18)
// we are ignoring leap seconds from calculations
@ -113,7 +113,7 @@ var Mainnet = CHAIN_CONFIG{Name: "mainnet",
}
var Testnet = CHAIN_CONFIG{Name: "testnet", // testnet will always have last 3 bytes 0
Network_ID: uuid.FromBytesOrNil([]byte{0x59, 0xd7, 0xf7, 0xe9, 0xdd, 0x48, 0xd5, 0xfd, 0x13, 0x0a, 0xf6, 0xe0, 0x23, 0x00, 0x00, 0x00}),
Network_ID: uuid.FromBytesOrNil([]byte{0x59, 0xd7, 0xf7, 0xe9, 0xdd, 0x48, 0xd5, 0xfd, 0x13, 0x0a, 0xf6, 0xe0, 0x24, 0x00, 0x00, 0x00}),
P2P_Default_Port: 40401,
RPC_Default_Port: 40402,
Wallet_RPC_Default_Port: 40403,

View File

@ -20,4 +20,4 @@ import "github.com/blang/semver"
// right now it has to be manually changed
// do we need to include git commitsha??
var Version = semver.MustParse("3.0.0-11.DEROHE.alpha+20122020")
var Version = semver.MustParse("3.0.0-22.DEROHE.alpha+27122020")

View File

@ -209,11 +209,14 @@ func (c *curvePoint) Mul(a *curvePoint, scalar *big.Int) {
// Transforms Jacobian coordinates to Affine coordinates
// (X' : Y' : Z) -> (X'/(Z^2) : Y'/(Z^3) : 1)
func (c *curvePoint) MakeAffine() {
if c.z == *newGFp(1) {
// point0 := *newGFp(0)
// point1 := *newGFp(1)
if c.z == point1 {
return
} else if c.z == *newGFp(0) { // return point at infinity if z = 0
} else if c.z == point0 { // return point at infinity if z = 0
c.x = gfP{0}
c.y = *newGFp(1)
c.y = point1
c.t = gfP{0}
return
}
@ -228,8 +231,8 @@ func (c *curvePoint) MakeAffine() {
gfpMul(&c.x, &c.x, zInv2) // x = x/(z^2)
gfpMul(&c.y, t, zInv2) // y = y/(z^3)
c.z = *newGFp(1)
c.t = *newGFp(1)
c.z = point1
c.t = point1
}
func (c *curvePoint) Neg(a *curvePoint) {
@ -238,3 +241,78 @@ func (c *curvePoint) Neg(a *curvePoint) {
c.z.Set(&a.z)
c.t = gfP{0}
}
var point0 = *newGFp(0)
var point1 = *newGFp(1)
// this will do batch inversions and thus optimize lookup table generation
// Montgomery Batch Inversion based trick
type G1Array []*G1
func (points G1Array) MakeAffine() {
// point0 := *newGFp(0)
// point1 := *newGFp(1)
accum := newGFp(1)
var scratch_backup [256]gfP
var scratch []gfP
if len(points) <= 256 {
scratch = scratch_backup[:0] // avoid allocation is possible
}
for _, e := range points {
if e.p == nil {
e.p = &curvePoint{}
}
scratch = append(scratch, *accum)
if e.p.z == point1 {
continue
} else if e.p.z == point0 { // return point at infinity if z = 0
e.p.x = gfP{0}
e.p.y = point1
e.p.t = gfP{0}
continue
}
gfpMul(accum, accum, &e.p.z) // accum *= z
/*
zInv := &gfP{}
zInv.Invert(&e.p.z)
fmt.Printf("%d inv %s\n",i, zInv)
*/
}
zInv_accum := gfP{}
zInv_accum.Invert(accum)
tmp := gfP{}
zInv := &gfP{}
for i := len(points) - 1; i >= 0; i-- {
e := points[i]
if e.p.z == point1 {
continue
} else if e.p.z == point0 { // return point at infinity if z = 0
continue
}
tmp = gfP{}
gfpMul(&tmp, &zInv_accum, &e.p.z)
gfpMul(zInv, &zInv_accum, &scratch[i])
zInv_accum = tmp
// fmt.Printf("%d inv %s\n",i, zInv)
t, zInv2 := &gfP{}, &gfP{}
gfpMul(t, &e.p.y, zInv) // t = y/z
gfpMul(zInv2, zInv, zInv) // zInv2 = 1/(z^2)
gfpMul(&e.p.x, &e.p.x, zInv2) // x = x/(z^2)
gfpMul(&e.p.y, t, zInv2) // y = y/(z^3)
e.p.z = point1
e.p.t = point1
}
}

View File

@ -0,0 +1,66 @@
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package bn256
import (
"crypto/rand"
"testing"
"github.com/stretchr/testify/require"
)
func TestG1Array(t *testing.T) {
count := 8
var g1array G1Array
var g1array_opt G1Array
for i := 0; i < count; i++ {
a, _ := rand.Int(rand.Reader, Order)
g1array = append(g1array, new(G1).ScalarBaseMult(a))
g1array_opt = append(g1array_opt, new(G1).ScalarBaseMult(a))
}
g1array_opt.MakeAffine()
for i := range g1array_opt {
require.Equal(t, g1array_opt[i].p.z, *newGFp(1)) // current we are not testing points of infinity
}
}
func benchmarksingleinverts(count int, b *testing.B) {
var g1array, g1backup G1Array
for i := 0; i < count; i++ {
a, _ := rand.Int(rand.Reader, Order)
g1backup = append(g1backup, new(G1).ScalarBaseMult(a))
}
for n := 0; n < b.N; n++ {
g1array = g1array[:0]
for i := range g1backup {
g1array = append(g1array, new(G1).Set(g1backup[i]))
g1array[i].p.MakeAffine()
}
}
}
func benchmarkbatchedinverts(count int, b *testing.B) {
var g1array, g1backup G1Array
for i := 0; i < count; i++ {
a, _ := rand.Int(rand.Reader, Order)
g1backup = append(g1backup, new(G1).ScalarBaseMult(a))
}
for n := 0; n < b.N; n++ {
g1array = g1array[:0]
for i := range g1backup {
g1array = append(g1array, new(G1).Set(g1backup[i]))
}
g1array.MakeAffine()
}
}
func BenchmarkInverts_Single_256(b *testing.B) { benchmarksingleinverts(256, b) }
func BenchmarkInverts_Batched_256(b *testing.B) { benchmarkbatchedinverts(256, b) }

View File

@ -52,13 +52,14 @@ func (e *G1) IsHigherY() bool {
e.p = &curvePoint{}
}
yCoord := &gfP{}
yCoord.Set(&e.p.y)
var yCoord gfP
//yCoord.Set(&e.p.y)
yCoord = e.p.y
yCoordNeg := &gfP{}
gfpNeg(yCoordNeg, yCoord)
var yCoordNeg gfP
gfpNeg(&yCoordNeg, &yCoord)
res := gfpCmp(yCoord, yCoordNeg)
res := gfpCmp(&yCoord, &yCoordNeg)
if res == 1 { // yCoord > yCoordNeg
return true
} else if res == -1 {
@ -104,6 +105,39 @@ func (e *G1) EncodeCompressed() []byte {
return ret
}
// returns to buffer rather than allocation from GC
func (e *G1) EncodeCompressedToBuf(ret []byte) {
// Check nil pointers
if e.p == nil {
e.p = &curvePoint{}
}
e.p.MakeAffine()
//ret := make([]byte, G1CompressedSize)
// Flag the encoding with the compressed flag
ret[0] |= serializationCompressed
if e.p.IsInfinity() {
// Flag the encoding with the infinity flag
ret[0] |= serializationInfinity
return
}
if e.IsHigherY() {
// Flag the encoding with the bigY flag
ret[0] |= serializationBigY
}
// We start the serializagtion of the coordinates at the index 1
// Since the index 0 in the `ret` corresponds to the masking
temp := &gfP{}
montDecode(temp, &e.p.x)
temp.Marshal(ret[1:])
return
}
// EncodeUncompressed converts the compressed point e into bytes
// Take a point P in Jacobian form (where each coordinate is MontEncoded)
// and encodes it by going back to affine coordinates and montDecode all coordinates
@ -232,8 +266,6 @@ func (e *G1) DecodeCompressed(encoding []byte) error {
copy(bin, encoding)
bin[0] &= serializationMask
// Decode the point at infinity in the compressed form
if encoding[0]&serializationInfinity != 0 {
if encoding[0]&serializationBigY != 0 {
@ -252,7 +284,6 @@ func (e *G1) DecodeCompressed(encoding []byte) error {
return nil
}
// Decompress the point P (P =/= ∞)
var err error
if err = e.p.x.Unmarshal(bin[1:]); err != nil {
@ -268,7 +299,6 @@ func (e *G1) DecodeCompressed(encoding []byte) error {
}
e.p.y = *y
// The flag serializationBigY is set (so the point pt with the higher Y is encoded)
// but the point e retrieved from the `getYFromX` is NOT the higher, then we inverse
if !e.IsHigherY() {
@ -281,7 +311,6 @@ func (e *G1) DecodeCompressed(encoding []byte) error {
}
}
// No need to check that the point e.p is on the curve
// since we retrieved y from x by using the curve equation.
// Adding it would be redundant

View File

@ -1,9 +1,10 @@
// +build !wasm
package rwc
import (
"io"
"github.com/gorilla/websocket"
"io"
)
type ReadWriteCloser struct {

68
glue/rwc/rwc_nhyoor.go Normal file
View File

@ -0,0 +1,68 @@
package rwc
import (
"context"
"io"
"nhooyr.io/websocket"
)
type ReadWriteCloserNhooyr struct {
WS *websocket.Conn
r io.Reader
w io.WriteCloser
}
func NewNhooyr(conn *websocket.Conn) *ReadWriteCloserNhooyr {
return &ReadWriteCloserNhooyr{WS: conn}
}
func (rwc *ReadWriteCloserNhooyr) Read(p []byte) (n int, err error) {
if rwc.r == nil {
rwc.WS.SetReadLimit(2 * 1024 * 1024)
_, rwc.r, err = rwc.WS.Reader(context.Background())
if err != nil {
return 0, err
}
}
for n = 0; n < len(p); {
var m int
m, err = rwc.r.Read(p[n:])
n += m
if err == io.EOF {
rwc.r = nil
}
if err != nil {
break
}
}
return
}
func (rwc *ReadWriteCloserNhooyr) Write(p []byte) (n int, err error) {
if rwc.w == nil {
rwc.w, err = rwc.WS.Writer(context.Background(), websocket.MessageText)
if err != nil {
return 0, err
}
}
for n = 0; n < len(p); {
var m int
m, err = rwc.w.Write(p)
n += m
if err != nil {
break
}
}
if err != nil || n == len(p) {
err = rwc.Close()
}
return
}
func (rwc *ReadWriteCloserNhooyr) Close() (err error) {
if rwc.w != nil {
err = rwc.w.Close()
rwc.w = nil
}
return err
}

View File

@ -38,10 +38,10 @@ import "github.com/vmihailenco/msgpack"
import "github.com/deroproject/derohe/config"
//import "github.com/deroproject/derosuite/crypto"
import "github.com/deroproject/derohe/crypto"
import "github.com/deroproject/derohe/globals"
//import "github.com/deroproject/derosuite/blockchain"
import "github.com/deroproject/derohe/blockchain"
// This file defines what all needs to be responded to become a server ( handling incoming requests)
@ -58,12 +58,27 @@ func fill_common(common *Common_Struct) {
} else {
common.Cumulative_Difficulty = chain.Load_Block_Cumulative_Difficulty(high_block).String()
}
if toporecord, err := chain.Store.Topo_store.Read(common.TopoHeight); err == nil {
if ss, err := chain.Store.Balance_store.LoadSnapshot(uint64(toporecord.State_Version)); err == nil {
if balance_tree, err := ss.GetTree(blockchain.BALANCE_TREE); err == nil {
if bhash, err := balance_tree.Hash(); err == nil {
common.StateHash = bhash
}
}
}
}
common.Top_Version = uint64(chain.Get_Current_Version_at_Height(int64(common.Height))) // this must be taken from the hardfork
}
// used while sendint TX ASAP
// this also skips statehash
func fill_common_skip_topoheight(common *Common_Struct) {
fill_common(common)
return
/*
common.Height = chain.Get_Height()
//common.StableHeight = chain.Get_Stable_Height()
common.TopoHeight = chain.Load_TOPO_HEIGHT()
@ -76,6 +91,7 @@ func fill_common_skip_topoheight(common *Common_Struct) {
common.Cumulative_Difficulty = chain.Load_Block_Cumulative_Difficulty(high_block).String()
}
common.Top_Version = uint64(chain.Get_Current_Version_at_Height(int64(common.Height))) // this must be taken from the hardfork
*/
}
@ -83,6 +99,7 @@ func fill_common_skip_topoheight(common *Common_Struct) {
func (connection *Connection) Update(common *Common_Struct) {
//connection.Lock()
//defer connection.Unlock()
var hash crypto.Hash
atomic.StoreInt64(&connection.Height, common.Height) // satify race detector GOD
if common.StableHeight != 0 {
atomic.StoreInt64(&connection.StableHeight, common.StableHeight) // satify race detector GOD
@ -105,6 +122,10 @@ func (connection *Connection) Update(common *Common_Struct) {
if connection.Top_Version != common.Top_Version {
atomic.StoreUint64(&connection.Top_Version, common.Top_Version) // satify race detector GOD
}
if common.StateHash != hash {
connection.StateHash = common.StateHash
}
}
// sets timeout based on connection state, so as stale connections are cleared quickly
@ -397,7 +418,6 @@ func Handle_Connection(conn net.Conn, remote_addr *net.TCPAddr, incoming bool, s
case V2_COMMAND_HANDSHAKE:
connection.Update(&command.Common)
connection.Handle_Handshake(data_read)
case V2_COMMAND_SYNC:
connection.Update(&command.Common)
connection.Handle_TimedSync(data_read)
@ -405,7 +425,6 @@ func Handle_Connection(conn net.Conn, remote_addr *net.TCPAddr, incoming bool, s
connection.Update(&command.Common)
connection.Handle_ChainRequest(data_read)
case V2_COMMAND_CHAIN_RESPONSE:
connection.Update(&command.Common)
connection.Handle_ChainResponse(data_read)
case V2_COMMAND_OBJECTS_REQUEST:
@ -417,10 +436,12 @@ func Handle_Connection(conn net.Conn, remote_addr *net.TCPAddr, incoming bool, s
case V2_NOTIFY_NEW_BLOCK: // for notification, instead of syncing, we will process notificaton first
connection.Handle_Notification_Block(data_read)
connection.Update(&command.Common) // we do it a bit later so we donot staart syncing
case V2_NOTIFY_NEW_TX:
connection.Update(&command.Common)
connection.Handle_Notification_Transaction(data_read)
case V2_NOTIFY_INVENTORY:
connection.Update(&command.Common)
connection.Handle_Incoming_Inventory(data_read)
default:
connection.logger.Debugf("Unhandled v2 command %d", command.Command)

View File

@ -69,6 +69,8 @@ type Connection struct {
Height int64 // last height sent by peer ( first member alignments issues)
StableHeight int64 // last stable height
TopoHeight int64 // topo height, current topo height, this is the only thing we require for syncing
StateHash crypto.Hash // statehash at the top
Pruned int64 // till where chain has been pruned on this node
LastObjectRequestTime int64 // when was the last item placed in object list
BytesIn uint64 // total bytes in
@ -260,9 +262,9 @@ func Connection_Print() {
fmt.Printf("Connection info for peers\n")
if globals.Arguments["--debug"].(bool) == true {
fmt.Printf("%-20s %-16s %-5s %-7s %-7s %23s %3s %5s %s %s %s %s %10s\n", "Remote Addr", "PEER ID", "PORT", " State", "Latency", "S/H/T", "DIR", "QUEUE", " IN", " OUT", " IN SPEED", " OUT SPEED", "Version")
fmt.Printf("%-20s %-16s %-5s %-7s %-7s %23s %3s %5s %s %s %s %s %16s %16s\n", "Remote Addr", "PEER ID", "PORT", " State", "Latency", "S/H/T", "DIR", "QUEUE", " IN", " OUT", " IN SPEED", " OUT SPEED", "Version", "Statehash")
} else {
fmt.Printf("%-20s %-16s %-5s %-7s %-7s %17s %3s %5s %s %s %s %s %10s\n", "Remote Addr", "PEER ID", "PORT", " State", "Latency", "H/T", "DIR", "QUEUE", " IN", " OUT", " IN SPEED", " OUT SPEED", "Version")
fmt.Printf("%-20s %-16s %-5s %-7s %-7s %17s %3s %5s %s %s %s %s %16s %16s\n", "Remote Addr", "PEER ID", "PORT", " State", "Latency", "H/T", "DIR", "QUEUE", " IN", " OUT", " IN SPEED", " OUT SPEED", "Version", "Statehash")
}
@ -320,11 +322,11 @@ func Connection_Print() {
if globals.Arguments["--debug"].(bool) == true {
hstring := fmt.Sprintf("%d/%d/%d", clist[i].StableHeight, clist[i].Height, clist[i].TopoHeight)
fmt.Printf("%-20s %16x %5d %7s %7s %23s %s %5d %7s %7s %8s %9s %10s %s\n", clist[i].Addr.IP, clist[i].Peer_ID, clist[i].Port, state, time.Duration(atomic.LoadInt64(&clist[i].Latency)).Round(time.Millisecond).String(), hstring, dir, clist[i].IsConnectionSyncing(), humanize.Bytes(atomic.LoadUint64(&clist[i].BytesIn)), humanize.Bytes(atomic.LoadUint64(&clist[i].BytesOut)), humanize.Bytes(uint64(clist[i].SpeedIn.Rate()/60)), humanize.Bytes(uint64(clist[i].SpeedOut.Rate()/60)), version, tag)
fmt.Printf("%-20s %16x %5d %7s %7s %23s %s %5d %7s %7s %8s %9s %16s %s %x\n", clist[i].Addr.IP, clist[i].Peer_ID, clist[i].Port, state, time.Duration(atomic.LoadInt64(&clist[i].Latency)).Round(time.Millisecond).String(), hstring, dir, clist[i].IsConnectionSyncing(), humanize.Bytes(atomic.LoadUint64(&clist[i].BytesIn)), humanize.Bytes(atomic.LoadUint64(&clist[i].BytesOut)), humanize.Bytes(uint64(clist[i].SpeedIn.Rate()/60)), humanize.Bytes(uint64(clist[i].SpeedOut.Rate()/60)), version, tag, clist[i].StateHash[:])
} else {
hstring := fmt.Sprintf("%d/%d", clist[i].Height, clist[i].TopoHeight)
fmt.Printf("%-20s %16x %5d %7s %7s %17s %s %5d %7s %7s %8s %9s %10s %s\n", clist[i].Addr.IP, clist[i].Peer_ID, clist[i].Port, state, time.Duration(atomic.LoadInt64(&clist[i].Latency)).Round(time.Millisecond).String(), hstring, dir, clist[i].IsConnectionSyncing(), humanize.Bytes(atomic.LoadUint64(&clist[i].BytesIn)), humanize.Bytes(atomic.LoadUint64(&clist[i].BytesOut)), humanize.Bytes(uint64(clist[i].SpeedIn.Rate()/60)), humanize.Bytes(uint64(clist[i].SpeedOut.Rate()/60)), version, tag)
fmt.Printf("%-20s %16x %5d %7s %7s %17s %s %5d %7s %7s %8s %9s %16s %s %x\n", clist[i].Addr.IP, clist[i].Peer_ID, clist[i].Port, state, time.Duration(atomic.LoadInt64(&clist[i].Latency)).Round(time.Millisecond).String(), hstring, dir, clist[i].IsConnectionSyncing(), humanize.Bytes(atomic.LoadUint64(&clist[i].BytesIn)), humanize.Bytes(atomic.LoadUint64(&clist[i].BytesOut)), humanize.Bytes(uint64(clist[i].SpeedIn.Rate()/60)), humanize.Bytes(uint64(clist[i].SpeedOut.Rate()/60)), version, tag, clist[i].StateHash[:8])
}
@ -542,18 +544,19 @@ func Broadcast_Tx(tx *transaction.Transaction, PeerID uint64) (relayed_count int
}
}()
var request Notify_New_Objects_Struct
var request Object_Request_Struct
fill_common_skip_topoheight(&request.Common) // fill common info, but skip topo height
request.Command = V2_NOTIFY_NEW_TX
request.Tx = tx.Serialize()
request.Command = V2_NOTIFY_INVENTORY
txhash := tx.GetHash()
request.Tx_list = append(request.Tx_list, txhash)
serialized, err := msgpack.Marshal(&request)
if err != nil {
panic(err)
}
txhash := tx.GetHash()
our_height := chain.Get_Height()
unique_map := UniqueConnections()
@ -585,16 +588,23 @@ func Broadcast_Tx(tx *transaction.Transaction, PeerID uint64) (relayed_count int
}
}()
connection.Send_Message(serialized) // send the bytes
// mark the TX as having sent to this node
// when this tx is
connection.TXpool_cache_lock.Lock()
resend := true
// disable cache if not possible due to options
// assuming the peer is good, he would like to obtain the tx ASAP
if globals.Arguments["--lowcpuram"].(bool) == false && connection.TXpool_cache != nil {
connection.TXpool_cache_lock.Lock()
if _, ok := connection.TXpool_cache[binary.LittleEndian.Uint64(txhash[:])]; !ok {
connection.TXpool_cache[binary.LittleEndian.Uint64(txhash[:])] = uint32(time.Now().Unix())
resend = true
} else {
resend = false
}
connection.TXpool_cache_lock.Unlock()
}
if resend {
connection.Send_Message(serialized) // send the bytes
}
}(v)
}
@ -662,7 +672,7 @@ func trigger_sync() {
//connection.Lock() recursive mutex are not suported
// only choose highest available peers for syncing
if atomic.LoadUint32(&connection.State) != HANDSHAKE_PENDING && topoheight <= atomic.LoadInt64(&connection.TopoHeight) { // skip pre-handshake connections
if atomic.LoadUint32(&connection.State) != HANDSHAKE_PENDING && topoheight <= atomic.LoadInt64(&connection.TopoHeight) && topoheight >= connection.Pruned { // skip pre-handshake connections
// check whether we are lagging with this connection
//connection.Lock()
islagging := chain.IsLagging(connection.CDIFF.Load().(*big.Int)) // we only use cdiff to see if we need to resync

View File

@ -53,6 +53,7 @@ func (connection *Connection) Send_Handshake(request bool) {
handshake.UTC_Time = int64(time.Now().UTC().Unix()) // send our UTC time
handshake.Local_Port = uint32(P2P_Port) // export requested or default port
handshake.Peer_ID = GetPeerID() // give our randomly generated peer id
handshake.Pruned = chain.LocatePruneTopo()
if globals.Arguments["--lowcpuram"].(bool) == false {
handshake.Flags = append(handshake.Flags, FLAG_LOWCPURAM) // add low cpu ram flag
}
@ -126,6 +127,9 @@ func (connection *Connection) Handle_Handshake(buf []byte) {
if len(handshake.Tag) < 128 {
connection.Tag = handshake.Tag
}
if handshake.Pruned >= 0 {
connection.Pruned = handshake.Pruned
}
// TODO we must also add the peer to our list
// which can be distributed to other peers
@ -181,7 +185,7 @@ func (connection *Connection) Handle_Handshake(buf []byte) {
rlog.Debugf("Peer provides %d peers", len(handshake.PeerList))
for i := range handshake.PeerList {
if i < 13 {
Peer_Add(&Peer{Address: handshake.PeerList[i].Addr , LastConnected : uint64(time.Now().UTC().Unix())})
Peer_Add(&Peer{Address: handshake.PeerList[i].Addr, LastConnected: uint64(time.Now().UTC().Unix())})
}
}

135
p2p/inventory_handler.go Normal file
View File

@ -0,0 +1,135 @@
// Copyright 2017-2021 DERO Project. All rights reserved.
// Use of this source code in any form is governed by RESEARCH license.
// license can be found in the LICENSE file.
// GPG: 0F39 E425 8C65 3947 702A 8234 08B2 0360 A03A 9DE8
//
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
// THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
// THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
package p2p
//import "fmt"
//import "net"
import "sync/atomic"
import "time"
//import "container/list"
import "github.com/romana/rlog"
import "github.com/vmihailenco/msgpack"
//import "github.com/deroproject/derosuite/crypto"
//import "github.com/deroproject/derosuite/globals"
import "github.com/deroproject/derohe/crypto"
//import "github.com/deroproject/derosuite/globals"
//import "github.com/deroproject/derosuite/blockchain"
// we are sending object request
// right now we only send block ids
func (connection *Connection) Send_Inventory(blids []crypto.Hash, txids []crypto.Hash) {
var request Object_Request_Struct
fill_common(&request.Common) // fill common info
request.Command = V2_NOTIFY_INVENTORY
for i := range blids {
request.Block_list = append(request.Block_list, blids[i])
}
for i := range txids {
request.Tx_list = append(request.Tx_list, txids[i])
}
if len(blids) > 0 || len(txids) > 0 {
serialized, err := msgpack.Marshal(&request) // serialize and send
if err != nil {
panic(err)
}
// use first object
command := Queued_Command{Command: V2_COMMAND_OBJECTS_RESPONSE, BLID: blids, TXID: txids}
connection.Objects <- command
atomic.StoreInt64(&connection.LastObjectRequestTime, time.Now().Unix())
// we should add to queue that we are waiting for object response
//command := Queued_Command{Command: V2_COMMAND_OBJECTS_RESPONSE, BLID: blids, TXID: txids, Started: time.Now()}
connection.Lock()
//connection.Command_queue.PushBack(command) // queue command
connection.Send_Message_prelocked(serialized)
connection.Unlock()
rlog.Tracef(3, "object request sent contains %d blids %d txids %s ", len(blids), connection.logid)
}
}
// peer has given his list of inventory
// if certain object is not in our list we request with the inventory
// if everything is already in our inventory, do nothing ignore
func (connection *Connection) Handle_Incoming_Inventory(buf []byte) {
var request Object_Request_Struct
var response Object_Request_Struct
var blids, txids []crypto.Hash
var dirty = false
err := msgpack.Unmarshal(buf, &request)
if err != nil {
rlog.Warnf("Error while decoding incoming object request err %s %s", err, connection.logid)
connection.Exit()
}
if len(request.Block_list) >= 1 { // handle incoming blocks list
for i := range request.Block_list { //
if !chain.Is_Block_Topological_order(request.Block_list[i]) { // block is not in our chain
if !chain.Block_Exists(request.Block_list[i]) { // check whether the block can be loaded from disk
response.Block_list = append(response.Block_list, request.Block_list[i])
blids = append(blids, request.Block_list[i])
dirty = true
}
}
}
}
if len(request.Tx_list) >= 1 { // handle incoming tx list and see whether it exists in mempoolor regpool
for i := range request.Tx_list { //
if !(chain.Mempool.Mempool_TX_Exist(request.Tx_list[i]) || chain.Regpool.Regpool_TX_Exist(request.Tx_list[i])) { // check if is already in mempool skip it
if _, err = chain.Store.Block_tx_store.ReadTX(request.Tx_list[i]); err != nil { // check whether the tx can be loaded from disk
response.Tx_list = append(response.Tx_list, request.Tx_list[i])
txids = append(txids, request.Tx_list[i])
dirty = true
}
}
}
}
if dirty { // request inventory only if we want it
fill_common(&response.Common) // fill common info
response.Command = V2_COMMAND_OBJECTS_REQUEST
serialized, err := msgpack.Marshal(&response) // serialize and send
if err != nil {
panic(err)
}
command := Queued_Command{Command: V2_COMMAND_OBJECTS_RESPONSE, BLID: blids, TXID: txids}
connection.Objects <- command
atomic.StoreInt64(&connection.LastObjectRequestTime, time.Now().Unix())
rlog.Tracef(3, "OBJECT REQUEST SENT sent size %d %s", len(serialized), connection.logid)
connection.Send_Message(serialized)
}
}

View File

@ -87,14 +87,13 @@ func (connection *Connection) Handle_ObjectRequest(buf []byte) {
connection.Exit()
}
if len(request.Block_list) < 1 { // we are expecting 1 block
if len(request.Block_list) < 1 && len(request.Tx_list) < 1 { // we are expecting 1 block or 1 tx
rlog.Warnf("malformed object request received, banning peer %+v %s", request, connection.logid)
connection.Exit()
}
for i := 0; i < len(request.Block_list); i++ { // find the common point in our chain
for i := range request.Block_list { // find the common point in our chain
var cbl Complete_Block
if chain.Is_Block_Topological_order(request.Block_list[i]) {
bl, _ := chain.Load_BL_FROM_ID(request.Block_list[i])
cbl.Block = bl.Serialize()
for j := range bl.Tx_hashes {
@ -105,12 +104,20 @@ func (connection *Connection) Handle_ObjectRequest(buf []byte) {
cbl.Txs = append(cbl.Txs, tx_bytes) // append all the txs
}
}
response.CBlocks = append(response.CBlocks, cbl)
}
// we can serve maximum of 1024 BLID = 32 KB
for i := range request.Tx_list { // find the common point in our chain
var tx_bytes []byte
if tx := chain.Mempool.Mempool_Get_TX(request.Tx_list[i]); tx != nil { // if tx can be satisfied from pool, so be it
tx_bytes = tx.Serialize()
} else if tx := chain.Regpool.Regpool_Get_TX(request.Tx_list[i]); tx != nil { // if tx can be satisfied from regpool, so be it
tx_bytes = tx.Serialize()
} else if tx_bytes, err = chain.Store.Block_tx_store.ReadTX(request.Tx_list[i]); err != nil {
return
}
response.Txs = append(response.Txs, tx_bytes) // append all the txs
}
// if everything is OK, we must respond with object response
fill_common(&response.Common) // fill common info

View File

@ -65,6 +65,10 @@ func (connection *Connection) Handle_ObjectResponse(buf []byte) {
rlog.Warnf("we got %d response for %d requests %s %s", len(response.CBlocks), len(expected.BLID), connection.logid)
}
if len(response.Txs) != len(expected.TXID) { // we requested x block , peer sent us y blocks, time to ban peer
rlog.Warnf("we got %d response for %d requests %s %s", len(response.CBlocks), len(expected.BLID), connection.logid)
}
for i := 0; i < len(response.CBlocks); i++ { // process incoming full blocks
var cbl block.Complete_Block // parse incoming block and deserialize it
var bl block.Block
@ -107,6 +111,12 @@ func (connection *Connection) Handle_ObjectResponse(buf []byte) {
if !ok && err == errormsg.ErrInvalidPoW {
connection.logger.Warnf("This peer should be banned")
connection.Exit()
return
}
if !ok && err == errormsg.ErrPastMissing {
rlog.Warnf("Error Incoming Block coould not be added due to missing past, so skipping future block err %s %s", err, connection.logid)
return
}
// add the object to object pool from where it will be consume
@ -114,4 +124,18 @@ func (connection *Connection) Handle_ObjectResponse(buf []byte) {
}
for i := range response.Txs { // process incoming txs for mempool
if !chain.Mempool.Mempool_TX_Exist(expected.TXID[i]) { // we still donot have it, so try to process it
var tx transaction.Transaction
err = tx.DeserializeHeader(response.Txs[i])
if err != nil { // we have a tx which could not be deserialized ban peer
rlog.Warnf("Error Incoming TX could not be deserialized err %s %s", err, connection.logid)
connection.Exit()
return
}
chain.Add_TX_To_Pool(&tx) // currently we are ignoring error
}
}
}

View File

@ -41,6 +41,8 @@ const V2_COMMAND_OBJECTS_RESPONSE = 46
const V2_NOTIFY_NEW_BLOCK = 0xff // Notifications are asyncronous all notifications come here, such as new block, new txs
const V2_NOTIFY_NEW_TX = 0xfe // notify tx using this
const V2_NOTIFY_INVENTORY = 0xfd // notify inventory that we have a new tx, or block
// this has the same structure V2_COMMAND_OBJECTS_REQUEST
// used to parse incoming packet for for command , so as a repective command command could be triggered
type Common_Struct struct {
@ -48,6 +50,7 @@ type Common_Struct struct {
TopoHeight int64 `msgpack:"THEIGHT"`
StableHeight int64 `msgpack:"SHEIGHT"`
Cumulative_Difficulty string `msgpack:"CDIFF"`
StateHash [32]byte `msgpack:"STATE"`
// Top_ID [32]byte `msgpack:"TOP"` // 32 bytes of Top block
Top_Version uint64 `msgpack:"HF"` // this basically represents the hard fork version
}
@ -64,6 +67,7 @@ type Handshake_Struct struct {
UTC_Time int64 `msgpack:"UTC"`
Local_Port uint32 `msgpack:"LP"`
Peer_ID uint64 `msgpack:"PID"`
Pruned int64 `msgpack:"PRUNED"`
Network_ID [16]byte `msgpack:"NID"` // 16 bytes
Flags []string `msgpack:"FLAGS"`
PeerList []Peer_Info `msgpack:"PLIST"`
@ -103,6 +107,7 @@ type Chain_Response_Struct struct { // peers gives us point where to get the cha
}
// also used by V2_NOTIFY_INVENTORY
type Object_Request_Struct struct {
Command uint64 `msgpack:"COMMAND"`
Common Common_Struct `msgpack:"COMMON"` // add all fields of Common

View File

@ -1,5 +0,0 @@
*.prof
*.test
*.swp
/bin/
cmd/bolt/bolt

View File

@ -1,20 +0,0 @@
The MIT License (MIT)
Copyright (c) 2013 Ben Johnson
Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the "Software"), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
the Software, and to permit persons to whom the Software is furnished to do so,
subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

View File

@ -1,30 +0,0 @@
BRANCH=`git rev-parse --abbrev-ref HEAD`
COMMIT=`git rev-parse --short HEAD`
GOLDFLAGS="-X main.branch $(BRANCH) -X main.commit $(COMMIT)"
default: build
race:
@go test -v -race -test.run="TestSimulate_(100op|1000op)"
fmt:
!(gofmt -l -s -d $(shell find . -name \*.go) | grep '[a-z]')
# go get honnef.co/go/tools/simple
gosimple:
gosimple ./...
# go get honnef.co/go/tools/unused
unused:
unused ./...
# go get github.com/kisielk/errcheck
errcheck:
@errcheck -ignorepkg=bytes -ignore=os:Remove github.com/coreos/bbolt
test:
go test -timeout 20m -v -coverprofile cover.out -covermode atomic
# Note: gets "program not an importable package" in out of path builds
go test -v ./cmd/bolt
.PHONY: race fmt errcheck test gosimple unused

View File

@ -1,928 +0,0 @@
bbolt
====
[![Go Report Card](https://goreportcard.com/badge/github.com/coreos/bbolt?style=flat-square)](https://goreportcard.com/report/github.com/coreos/bbolt)
[![Coverage](https://codecov.io/gh/coreos/bbolt/branch/master/graph/badge.svg)](https://codecov.io/gh/coreos/bbolt)
[![Godoc](http://img.shields.io/badge/go-documentation-blue.svg?style=flat-square)](https://godoc.org/github.com/coreos/bbolt)
bbolt is a fork of [Ben Johnson's][gh_ben] [Bolt][bolt] key/value
store. The purpose of this fork is to provide the Go community with an active
maintenance and development target for Bolt; the goal is improved reliability
and stability. bbolt includes bug fixes, performance enhancements, and features
not found in Bolt while preserving backwards compatibility with the Bolt API.
Bolt is a pure Go key/value store inspired by [Howard Chu's][hyc_symas]
[LMDB project][lmdb]. The goal of the project is to provide a simple,
fast, and reliable database for projects that don't require a full database
server such as Postgres or MySQL.
Since Bolt is meant to be used as such a low-level piece of functionality,
simplicity is key. The API will be small and only focus on getting values
and setting values. That's it.
[gh_ben]: https://github.com/benbjohnson
[bolt]: https://github.com/boltdb/bolt
[hyc_symas]: https://twitter.com/hyc_symas
[lmdb]: http://symas.com/mdb/
## Project Status
Bolt is stable, the API is fixed, and the file format is fixed. Full unit
test coverage and randomized black box testing are used to ensure database
consistency and thread safety. Bolt is currently used in high-load production
environments serving databases as large as 1TB. Many companies such as
Shopify and Heroku use Bolt-backed services every day.
## Table of Contents
- [Getting Started](#getting-started)
- [Installing](#installing)
- [Opening a database](#opening-a-database)
- [Transactions](#transactions)
- [Read-write transactions](#read-write-transactions)
- [Read-only transactions](#read-only-transactions)
- [Batch read-write transactions](#batch-read-write-transactions)
- [Managing transactions manually](#managing-transactions-manually)
- [Using buckets](#using-buckets)
- [Using key/value pairs](#using-keyvalue-pairs)
- [Autoincrementing integer for the bucket](#autoincrementing-integer-for-the-bucket)
- [Iterating over keys](#iterating-over-keys)
- [Prefix scans](#prefix-scans)
- [Range scans](#range-scans)
- [ForEach()](#foreach)
- [Nested buckets](#nested-buckets)
- [Database backups](#database-backups)
- [Statistics](#statistics)
- [Read-Only Mode](#read-only-mode)
- [Mobile Use (iOS/Android)](#mobile-use-iosandroid)
- [Resources](#resources)
- [Comparison with other databases](#comparison-with-other-databases)
- [Postgres, MySQL, & other relational databases](#postgres-mysql--other-relational-databases)
- [LevelDB, RocksDB](#leveldb-rocksdb)
- [LMDB](#lmdb)
- [Caveats & Limitations](#caveats--limitations)
- [Reading the Source](#reading-the-source)
- [Other Projects Using Bolt](#other-projects-using-bolt)
## Getting Started
### Installing
To start using Bolt, install Go and run `go get`:
```sh
$ go get github.com/coreos/bbolt/...
```
This will retrieve the library and install the `bolt` command line utility into
your `$GOBIN` path.
### Opening a database
The top-level object in Bolt is a `DB`. It is represented as a single file on
your disk and represents a consistent snapshot of your data.
To open your database, simply use the `bolt.Open()` function:
```go
package main
import (
"log"
bolt "github.com/coreos/bbolt"
)
func main() {
// Open the my.db data file in your current directory.
// It will be created if it doesn't exist.
db, err := bolt.Open("my.db", 0600, nil)
if err != nil {
log.Fatal(err)
}
defer db.Close()
...
}
```
Please note that Bolt obtains a file lock on the data file so multiple processes
cannot open the same database at the same time. Opening an already open Bolt
database will cause it to hang until the other process closes it. To prevent
an indefinite wait you can pass a timeout option to the `Open()` function:
```go
db, err := bolt.Open("my.db", 0600, &bolt.Options{Timeout: 1 * time.Second})
```
### Transactions
Bolt allows only one read-write transaction at a time but allows as many
read-only transactions as you want at a time. Each transaction has a consistent
view of the data as it existed when the transaction started.
Individual transactions and all objects created from them (e.g. buckets, keys)
are not thread safe. To work with data in multiple goroutines you must start
a transaction for each one or use locking to ensure only one goroutine accesses
a transaction at a time. Creating transaction from the `DB` is thread safe.
Read-only transactions and read-write transactions should not depend on one
another and generally shouldn't be opened simultaneously in the same goroutine.
This can cause a deadlock as the read-write transaction needs to periodically
re-map the data file but it cannot do so while a read-only transaction is open.
#### Read-write transactions
To start a read-write transaction, you can use the `DB.Update()` function:
```go
err := db.Update(func(tx *bolt.Tx) error {
...
return nil
})
```
Inside the closure, you have a consistent view of the database. You commit the
transaction by returning `nil` at the end. You can also rollback the transaction
at any point by returning an error. All database operations are allowed inside
a read-write transaction.
Always check the return error as it will report any disk failures that can cause
your transaction to not complete. If you return an error within your closure
it will be passed through.
#### Read-only transactions
To start a read-only transaction, you can use the `DB.View()` function:
```go
err := db.View(func(tx *bolt.Tx) error {
...
return nil
})
```
You also get a consistent view of the database within this closure, however,
no mutating operations are allowed within a read-only transaction. You can only
retrieve buckets, retrieve values, and copy the database within a read-only
transaction.
#### Batch read-write transactions
Each `DB.Update()` waits for disk to commit the writes. This overhead
can be minimized by combining multiple updates with the `DB.Batch()`
function:
```go
err := db.Batch(func(tx *bolt.Tx) error {
...
return nil
})
```
Concurrent Batch calls are opportunistically combined into larger
transactions. Batch is only useful when there are multiple goroutines
calling it.
The trade-off is that `Batch` can call the given
function multiple times, if parts of the transaction fail. The
function must be idempotent and side effects must take effect only
after a successful return from `DB.Batch()`.
For example: don't display messages from inside the function, instead
set variables in the enclosing scope:
```go
var id uint64
err := db.Batch(func(tx *bolt.Tx) error {
// Find last key in bucket, decode as bigendian uint64, increment
// by one, encode back to []byte, and add new key.
...
id = newValue
return nil
})
if err != nil {
return ...
}
fmt.Println("Allocated ID %d", id)
```
#### Managing transactions manually
The `DB.View()` and `DB.Update()` functions are wrappers around the `DB.Begin()`
function. These helper functions will start the transaction, execute a function,
and then safely close your transaction if an error is returned. This is the
recommended way to use Bolt transactions.
However, sometimes you may want to manually start and end your transactions.
You can use the `DB.Begin()` function directly but **please** be sure to close
the transaction.
```go
// Start a writable transaction.
tx, err := db.Begin(true)
if err != nil {
return err
}
defer tx.Rollback()
// Use the transaction...
_, err := tx.CreateBucket([]byte("MyBucket"))
if err != nil {
return err
}
// Commit the transaction and check for error.
if err := tx.Commit(); err != nil {
return err
}
```
The first argument to `DB.Begin()` is a boolean stating if the transaction
should be writable.
### Using buckets
Buckets are collections of key/value pairs within the database. All keys in a
bucket must be unique. You can create a bucket using the `DB.CreateBucket()`
function:
```go
db.Update(func(tx *bolt.Tx) error {
b, err := tx.CreateBucket([]byte("MyBucket"))
if err != nil {
return fmt.Errorf("create bucket: %s", err)
}
return nil
})
```
You can also create a bucket only if it doesn't exist by using the
`Tx.CreateBucketIfNotExists()` function. It's a common pattern to call this
function for all your top-level buckets after you open your database so you can
guarantee that they exist for future transactions.
To delete a bucket, simply call the `Tx.DeleteBucket()` function.
### Using key/value pairs
To save a key/value pair to a bucket, use the `Bucket.Put()` function:
```go
db.Update(func(tx *bolt.Tx) error {
b := tx.Bucket([]byte("MyBucket"))
err := b.Put([]byte("answer"), []byte("42"))
return err
})
```
This will set the value of the `"answer"` key to `"42"` in the `MyBucket`
bucket. To retrieve this value, we can use the `Bucket.Get()` function:
```go
db.View(func(tx *bolt.Tx) error {
b := tx.Bucket([]byte("MyBucket"))
v := b.Get([]byte("answer"))
fmt.Printf("The answer is: %s\n", v)
return nil
})
```
The `Get()` function does not return an error because its operation is
guaranteed to work (unless there is some kind of system failure). If the key
exists then it will return its byte slice value. If it doesn't exist then it
will return `nil`. It's important to note that you can have a zero-length value
set to a key which is different than the key not existing.
Use the `Bucket.Delete()` function to delete a key from the bucket.
Please note that values returned from `Get()` are only valid while the
transaction is open. If you need to use a value outside of the transaction
then you must use `copy()` to copy it to another byte slice.
### Autoincrementing integer for the bucket
By using the `NextSequence()` function, you can let Bolt determine a sequence
which can be used as the unique identifier for your key/value pairs. See the
example below.
```go
// CreateUser saves u to the store. The new user ID is set on u once the data is persisted.
func (s *Store) CreateUser(u *User) error {
return s.db.Update(func(tx *bolt.Tx) error {
// Retrieve the users bucket.
// This should be created when the DB is first opened.
b := tx.Bucket([]byte("users"))
// Generate ID for the user.
// This returns an error only if the Tx is closed or not writeable.
// That can't happen in an Update() call so I ignore the error check.
id, _ := b.NextSequence()
u.ID = int(id)
// Marshal user data into bytes.
buf, err := json.Marshal(u)
if err != nil {
return err
}
// Persist bytes to users bucket.
return b.Put(itob(u.ID), buf)
})
}
// itob returns an 8-byte big endian representation of v.
func itob(v int) []byte {
b := make([]byte, 8)
binary.BigEndian.PutUint64(b, uint64(v))
return b
}
type User struct {
ID int
...
}
```
### Iterating over keys
Bolt stores its keys in byte-sorted order within a bucket. This makes sequential
iteration over these keys extremely fast. To iterate over keys we'll use a
`Cursor`:
```go
db.View(func(tx *bolt.Tx) error {
// Assume bucket exists and has keys
b := tx.Bucket([]byte("MyBucket"))
c := b.Cursor()
for k, v := c.First(); k != nil; k, v = c.Next() {
fmt.Printf("key=%s, value=%s\n", k, v)
}
return nil
})
```
The cursor allows you to move to a specific point in the list of keys and move
forward or backward through the keys one at a time.
The following functions are available on the cursor:
```
First() Move to the first key.
Last() Move to the last key.
Seek() Move to a specific key.
Next() Move to the next key.
Prev() Move to the previous key.
```
Each of those functions has a return signature of `(key []byte, value []byte)`.
When you have iterated to the end of the cursor then `Next()` will return a
`nil` key. You must seek to a position using `First()`, `Last()`, or `Seek()`
before calling `Next()` or `Prev()`. If you do not seek to a position then
these functions will return a `nil` key.
During iteration, if the key is non-`nil` but the value is `nil`, that means
the key refers to a bucket rather than a value. Use `Bucket.Bucket()` to
access the sub-bucket.
#### Prefix scans
To iterate over a key prefix, you can combine `Seek()` and `bytes.HasPrefix()`:
```go
db.View(func(tx *bolt.Tx) error {
// Assume bucket exists and has keys
c := tx.Bucket([]byte("MyBucket")).Cursor()
prefix := []byte("1234")
for k, v := c.Seek(prefix); k != nil && bytes.HasPrefix(k, prefix); k, v = c.Next() {
fmt.Printf("key=%s, value=%s\n", k, v)
}
return nil
})
```
#### Range scans
Another common use case is scanning over a range such as a time range. If you
use a sortable time encoding such as RFC3339 then you can query a specific
date range like this:
```go
db.View(func(tx *bolt.Tx) error {
// Assume our events bucket exists and has RFC3339 encoded time keys.
c := tx.Bucket([]byte("Events")).Cursor()
// Our time range spans the 90's decade.
min := []byte("1990-01-01T00:00:00Z")
max := []byte("2000-01-01T00:00:00Z")
// Iterate over the 90's.
for k, v := c.Seek(min); k != nil && bytes.Compare(k, max) <= 0; k, v = c.Next() {
fmt.Printf("%s: %s\n", k, v)
}
return nil
})
```
Note that, while RFC3339 is sortable, the Golang implementation of RFC3339Nano does not use a fixed number of digits after the decimal point and is therefore not sortable.
#### ForEach()
You can also use the function `ForEach()` if you know you'll be iterating over
all the keys in a bucket:
```go
db.View(func(tx *bolt.Tx) error {
// Assume bucket exists and has keys
b := tx.Bucket([]byte("MyBucket"))
b.ForEach(func(k, v []byte) error {
fmt.Printf("key=%s, value=%s\n", k, v)
return nil
})
return nil
})
```
Please note that keys and values in `ForEach()` are only valid while
the transaction is open. If you need to use a key or value outside of
the transaction, you must use `copy()` to copy it to another byte
slice.
### Nested buckets
You can also store a bucket in a key to create nested buckets. The API is the
same as the bucket management API on the `DB` object:
```go
func (*Bucket) CreateBucket(key []byte) (*Bucket, error)
func (*Bucket) CreateBucketIfNotExists(key []byte) (*Bucket, error)
func (*Bucket) DeleteBucket(key []byte) error
```
Say you had a multi-tenant application where the root level bucket was the account bucket. Inside of this bucket was a sequence of accounts which themselves are buckets. And inside the sequence bucket you could have many buckets pertaining to the Account itself (Users, Notes, etc) isolating the information into logical groupings.
```go
// createUser creates a new user in the given account.
func createUser(accountID int, u *User) error {
// Start the transaction.
tx, err := db.Begin(true)
if err != nil {
return err
}
defer tx.Rollback()
// Retrieve the root bucket for the account.
// Assume this has already been created when the account was set up.
root := tx.Bucket([]byte(strconv.FormatUint(accountID, 10)))
// Setup the users bucket.
bkt, err := root.CreateBucketIfNotExists([]byte("USERS"))
if err != nil {
return err
}
// Generate an ID for the new user.
userID, err := bkt.NextSequence()
if err != nil {
return err
}
u.ID = userID
// Marshal and save the encoded user.
if buf, err := json.Marshal(u); err != nil {
return err
} else if err := bkt.Put([]byte(strconv.FormatUint(u.ID, 10)), buf); err != nil {
return err
}
// Commit the transaction.
if err := tx.Commit(); err != nil {
return err
}
return nil
}
```
### Database backups
Bolt is a single file so it's easy to backup. You can use the `Tx.WriteTo()`
function to write a consistent view of the database to a writer. If you call
this from a read-only transaction, it will perform a hot backup and not block
your other database reads and writes.
By default, it will use a regular file handle which will utilize the operating
system's page cache. See the [`Tx`](https://godoc.org/github.com/coreos/bbolt#Tx)
documentation for information about optimizing for larger-than-RAM datasets.
One common use case is to backup over HTTP so you can use tools like `cURL` to
do database backups:
```go
func BackupHandleFunc(w http.ResponseWriter, req *http.Request) {
err := db.View(func(tx *bolt.Tx) error {
w.Header().Set("Content-Type", "application/octet-stream")
w.Header().Set("Content-Disposition", `attachment; filename="my.db"`)
w.Header().Set("Content-Length", strconv.Itoa(int(tx.Size())))
_, err := tx.WriteTo(w)
return err
})
if err != nil {
http.Error(w, err.Error(), http.StatusInternalServerError)
}
}
```
Then you can backup using this command:
```sh
$ curl http://localhost/backup > my.db
```
Or you can open your browser to `http://localhost/backup` and it will download
automatically.
If you want to backup to another file you can use the `Tx.CopyFile()` helper
function.
### Statistics
The database keeps a running count of many of the internal operations it
performs so you can better understand what's going on. By grabbing a snapshot
of these stats at two points in time we can see what operations were performed
in that time range.
For example, we could start a goroutine to log stats every 10 seconds:
```go
go func() {
// Grab the initial stats.
prev := db.Stats()
for {
// Wait for 10s.
time.Sleep(10 * time.Second)
// Grab the current stats and diff them.
stats := db.Stats()
diff := stats.Sub(&prev)
// Encode stats to JSON and print to STDERR.
json.NewEncoder(os.Stderr).Encode(diff)
// Save stats for the next loop.
prev = stats
}
}()
```
It's also useful to pipe these stats to a service such as statsd for monitoring
or to provide an HTTP endpoint that will perform a fixed-length sample.
### Read-Only Mode
Sometimes it is useful to create a shared, read-only Bolt database. To this,
set the `Options.ReadOnly` flag when opening your database. Read-only mode
uses a shared lock to allow multiple processes to read from the database but
it will block any processes from opening the database in read-write mode.
```go
db, err := bolt.Open("my.db", 0666, &bolt.Options{ReadOnly: true})
if err != nil {
log.Fatal(err)
}
```
### Mobile Use (iOS/Android)
Bolt is able to run on mobile devices by leveraging the binding feature of the
[gomobile](https://github.com/golang/mobile) tool. Create a struct that will
contain your database logic and a reference to a `*bolt.DB` with a initializing
constructor that takes in a filepath where the database file will be stored.
Neither Android nor iOS require extra permissions or cleanup from using this method.
```go
func NewBoltDB(filepath string) *BoltDB {
db, err := bolt.Open(filepath+"/demo.db", 0600, nil)
if err != nil {
log.Fatal(err)
}
return &BoltDB{db}
}
type BoltDB struct {
db *bolt.DB
...
}
func (b *BoltDB) Path() string {
return b.db.Path()
}
func (b *BoltDB) Close() {
b.db.Close()
}
```
Database logic should be defined as methods on this wrapper struct.
To initialize this struct from the native language (both platforms now sync
their local storage to the cloud. These snippets disable that functionality for the
database file):
#### Android
```java
String path;
if (android.os.Build.VERSION.SDK_INT >=android.os.Build.VERSION_CODES.LOLLIPOP){
path = getNoBackupFilesDir().getAbsolutePath();
} else{
path = getFilesDir().getAbsolutePath();
}
Boltmobiledemo.BoltDB boltDB = Boltmobiledemo.NewBoltDB(path)
```
#### iOS
```objc
- (void)demo {
NSString* path = [NSSearchPathForDirectoriesInDomains(NSLibraryDirectory,
NSUserDomainMask,
YES) objectAtIndex:0];
GoBoltmobiledemoBoltDB * demo = GoBoltmobiledemoNewBoltDB(path);
[self addSkipBackupAttributeToItemAtPath:demo.path];
//Some DB Logic would go here
[demo close];
}
- (BOOL)addSkipBackupAttributeToItemAtPath:(NSString *) filePathString
{
NSURL* URL= [NSURL fileURLWithPath: filePathString];
assert([[NSFileManager defaultManager] fileExistsAtPath: [URL path]]);
NSError *error = nil;
BOOL success = [URL setResourceValue: [NSNumber numberWithBool: YES]
forKey: NSURLIsExcludedFromBackupKey error: &error];
if(!success){
NSLog(@"Error excluding %@ from backup %@", [URL lastPathComponent], error);
}
return success;
}
```
## Resources
For more information on getting started with Bolt, check out the following articles:
* [Intro to BoltDB: Painless Performant Persistence](http://npf.io/2014/07/intro-to-boltdb-painless-performant-persistence/) by [Nate Finch](https://github.com/natefinch).
* [Bolt -- an embedded key/value database for Go](https://www.progville.com/go/bolt-embedded-db-golang/) by Progville
## Comparison with other databases
### Postgres, MySQL, & other relational databases
Relational databases structure data into rows and are only accessible through
the use of SQL. This approach provides flexibility in how you store and query
your data but also incurs overhead in parsing and planning SQL statements. Bolt
accesses all data by a byte slice key. This makes Bolt fast to read and write
data by key but provides no built-in support for joining values together.
Most relational databases (with the exception of SQLite) are standalone servers
that run separately from your application. This gives your systems
flexibility to connect multiple application servers to a single database
server but also adds overhead in serializing and transporting data over the
network. Bolt runs as a library included in your application so all data access
has to go through your application's process. This brings data closer to your
application but limits multi-process access to the data.
### LevelDB, RocksDB
LevelDB and its derivatives (RocksDB, HyperLevelDB) are similar to Bolt in that
they are libraries bundled into the application, however, their underlying
structure is a log-structured merge-tree (LSM tree). An LSM tree optimizes
random writes by using a write ahead log and multi-tiered, sorted files called
SSTables. Bolt uses a B+tree internally and only a single file. Both approaches
have trade-offs.
If you require a high random write throughput (>10,000 w/sec) or you need to use
spinning disks then LevelDB could be a good choice. If your application is
read-heavy or does a lot of range scans then Bolt could be a good choice.
One other important consideration is that LevelDB does not have transactions.
It supports batch writing of key/values pairs and it supports read snapshots
but it will not give you the ability to do a compare-and-swap operation safely.
Bolt supports fully serializable ACID transactions.
### LMDB
Bolt was originally a port of LMDB so it is architecturally similar. Both use
a B+tree, have ACID semantics with fully serializable transactions, and support
lock-free MVCC using a single writer and multiple readers.
The two projects have somewhat diverged. LMDB heavily focuses on raw performance
while Bolt has focused on simplicity and ease of use. For example, LMDB allows
several unsafe actions such as direct writes for the sake of performance. Bolt
opts to disallow actions which can leave the database in a corrupted state. The
only exception to this in Bolt is `DB.NoSync`.
There are also a few differences in API. LMDB requires a maximum mmap size when
opening an `mdb_env` whereas Bolt will handle incremental mmap resizing
automatically. LMDB overloads the getter and setter functions with multiple
flags whereas Bolt splits these specialized cases into their own functions.
## Caveats & Limitations
It's important to pick the right tool for the job and Bolt is no exception.
Here are a few things to note when evaluating and using Bolt:
* Bolt is good for read intensive workloads. Sequential write performance is
also fast but random writes can be slow. You can use `DB.Batch()` or add a
write-ahead log to help mitigate this issue.
* Bolt uses a B+tree internally so there can be a lot of random page access.
SSDs provide a significant performance boost over spinning disks.
* Try to avoid long running read transactions. Bolt uses copy-on-write so
old pages cannot be reclaimed while an old transaction is using them.
* Byte slices returned from Bolt are only valid during a transaction. Once the
transaction has been committed or rolled back then the memory they point to
can be reused by a new page or can be unmapped from virtual memory and you'll
see an `unexpected fault address` panic when accessing it.
* Bolt uses an exclusive write lock on the database file so it cannot be
shared by multiple processes.
* Be careful when using `Bucket.FillPercent`. Setting a high fill percent for
buckets that have random inserts will cause your database to have very poor
page utilization.
* Use larger buckets in general. Smaller buckets causes poor page utilization
once they become larger than the page size (typically 4KB).
* Bulk loading a lot of random writes into a new bucket can be slow as the
page will not split until the transaction is committed. Randomly inserting
more than 100,000 key/value pairs into a single new bucket in a single
transaction is not advised.
* Bolt uses a memory-mapped file so the underlying operating system handles the
caching of the data. Typically, the OS will cache as much of the file as it
can in memory and will release memory as needed to other processes. This means
that Bolt can show very high memory usage when working with large databases.
However, this is expected and the OS will release memory as needed. Bolt can
handle databases much larger than the available physical RAM, provided its
memory-map fits in the process virtual address space. It may be problematic
on 32-bits systems.
* The data structures in the Bolt database are memory mapped so the data file
will be endian specific. This means that you cannot copy a Bolt file from a
little endian machine to a big endian machine and have it work. For most
users this is not a concern since most modern CPUs are little endian.
* Because of the way pages are laid out on disk, Bolt cannot truncate data files
and return free pages back to the disk. Instead, Bolt maintains a free list
of unused pages within its data file. These free pages can be reused by later
transactions. This works well for many use cases as databases generally tend
to grow. However, it's important to note that deleting large chunks of data
will not allow you to reclaim that space on disk.
For more information on page allocation, [see this comment][page-allocation].
[page-allocation]: https://github.com/boltdb/bolt/issues/308#issuecomment-74811638
## Reading the Source
Bolt is a relatively small code base (<5KLOC) for an embedded, serializable,
transactional key/value database so it can be a good starting point for people
interested in how databases work.
The best places to start are the main entry points into Bolt:
- `Open()` - Initializes the reference to the database. It's responsible for
creating the database if it doesn't exist, obtaining an exclusive lock on the
file, reading the meta pages, & memory-mapping the file.
- `DB.Begin()` - Starts a read-only or read-write transaction depending on the
value of the `writable` argument. This requires briefly obtaining the "meta"
lock to keep track of open transactions. Only one read-write transaction can
exist at a time so the "rwlock" is acquired during the life of a read-write
transaction.
- `Bucket.Put()` - Writes a key/value pair into a bucket. After validating the
arguments, a cursor is used to traverse the B+tree to the page and position
where they key & value will be written. Once the position is found, the bucket
materializes the underlying page and the page's parent pages into memory as
"nodes". These nodes are where mutations occur during read-write transactions.
These changes get flushed to disk during commit.
- `Bucket.Get()` - Retrieves a key/value pair from a bucket. This uses a cursor
to move to the page & position of a key/value pair. During a read-only
transaction, the key and value data is returned as a direct reference to the
underlying mmap file so there's no allocation overhead. For read-write
transactions, this data may reference the mmap file or one of the in-memory
node values.
- `Cursor` - This object is simply for traversing the B+tree of on-disk pages
or in-memory nodes. It can seek to a specific key, move to the first or last
value, or it can move forward or backward. The cursor handles the movement up
and down the B+tree transparently to the end user.
- `Tx.Commit()` - Converts the in-memory dirty nodes and the list of free pages
into pages to be written to disk. Writing to disk then occurs in two phases.
First, the dirty pages are written to disk and an `fsync()` occurs. Second, a
new meta page with an incremented transaction ID is written and another
`fsync()` occurs. This two phase write ensures that partially written data
pages are ignored in the event of a crash since the meta page pointing to them
is never written. Partially written meta pages are invalidated because they
are written with a checksum.
If you have additional notes that could be helpful for others, please submit
them via pull request.
## Other Projects Using Bolt
Below is a list of public, open source projects that use Bolt:
* [BoltDbWeb](https://github.com/evnix/boltdbweb) - A web based GUI for BoltDB files.
* [Operation Go: A Routine Mission](http://gocode.io) - An online programming game for Golang using Bolt for user accounts and a leaderboard.
* [Bazil](https://bazil.org/) - A file system that lets your data reside where it is most convenient for it to reside.
* [DVID](https://github.com/janelia-flyem/dvid) - Added Bolt as optional storage engine and testing it against Basho-tuned leveldb.
* [Skybox Analytics](https://github.com/skybox/skybox) - A standalone funnel analysis tool for web analytics.
* [Scuttlebutt](https://github.com/benbjohnson/scuttlebutt) - Uses Bolt to store and process all Twitter mentions of GitHub projects.
* [Wiki](https://github.com/peterhellberg/wiki) - A tiny wiki using Goji, BoltDB and Blackfriday.
* [ChainStore](https://github.com/pressly/chainstore) - Simple key-value interface to a variety of storage engines organized as a chain of operations.
* [MetricBase](https://github.com/msiebuhr/MetricBase) - Single-binary version of Graphite.
* [Gitchain](https://github.com/gitchain/gitchain) - Decentralized, peer-to-peer Git repositories aka "Git meets Bitcoin".
* [event-shuttle](https://github.com/sclasen/event-shuttle) - A Unix system service to collect and reliably deliver messages to Kafka.
* [ipxed](https://github.com/kelseyhightower/ipxed) - Web interface and api for ipxed.
* [BoltStore](https://github.com/yosssi/boltstore) - Session store using Bolt.
* [photosite/session](https://godoc.org/bitbucket.org/kardianos/photosite/session) - Sessions for a photo viewing site.
* [LedisDB](https://github.com/siddontang/ledisdb) - A high performance NoSQL, using Bolt as optional storage.
* [ipLocator](https://github.com/AndreasBriese/ipLocator) - A fast ip-geo-location-server using bolt with bloom filters.
* [cayley](https://github.com/google/cayley) - Cayley is an open-source graph database using Bolt as optional backend.
* [bleve](http://www.blevesearch.com/) - A pure Go search engine similar to ElasticSearch that uses Bolt as the default storage backend.
* [tentacool](https://github.com/optiflows/tentacool) - REST api server to manage system stuff (IP, DNS, Gateway...) on a linux server.
* [Seaweed File System](https://github.com/chrislusf/seaweedfs) - Highly scalable distributed key~file system with O(1) disk read.
* [InfluxDB](https://influxdata.com) - Scalable datastore for metrics, events, and real-time analytics.
* [Freehold](http://tshannon.bitbucket.org/freehold/) - An open, secure, and lightweight platform for your files and data.
* [Prometheus Annotation Server](https://github.com/oliver006/prom_annotation_server) - Annotation server for PromDash & Prometheus service monitoring system.
* [Consul](https://github.com/hashicorp/consul) - Consul is service discovery and configuration made easy. Distributed, highly available, and datacenter-aware.
* [Kala](https://github.com/ajvb/kala) - Kala is a modern job scheduler optimized to run on a single node. It is persistent, JSON over HTTP API, ISO 8601 duration notation, and dependent jobs.
* [drive](https://github.com/odeke-em/drive) - drive is an unofficial Google Drive command line client for \*NIX operating systems.
* [stow](https://github.com/djherbis/stow) - a persistence manager for objects
backed by boltdb.
* [buckets](https://github.com/joyrexus/buckets) - a bolt wrapper streamlining
simple tx and key scans.
* [mbuckets](https://github.com/abhigupta912/mbuckets) - A Bolt wrapper that allows easy operations on multi level (nested) buckets.
* [Request Baskets](https://github.com/darklynx/request-baskets) - A web service to collect arbitrary HTTP requests and inspect them via REST API or simple web UI, similar to [RequestBin](http://requestb.in/) service
* [Go Report Card](https://goreportcard.com/) - Go code quality report cards as a (free and open source) service.
* [Boltdb Boilerplate](https://github.com/bobintornado/boltdb-boilerplate) - Boilerplate wrapper around bolt aiming to make simple calls one-liners.
* [lru](https://github.com/crowdriff/lru) - Easy to use Bolt-backed Least-Recently-Used (LRU) read-through cache with chainable remote stores.
* [Storm](https://github.com/asdine/storm) - Simple and powerful ORM for BoltDB.
* [GoWebApp](https://github.com/josephspurrier/gowebapp) - A basic MVC web application in Go using BoltDB.
* [SimpleBolt](https://github.com/xyproto/simplebolt) - A simple way to use BoltDB. Deals mainly with strings.
* [Algernon](https://github.com/xyproto/algernon) - A HTTP/2 web server with built-in support for Lua. Uses BoltDB as the default database backend.
* [MuLiFS](https://github.com/dankomiocevic/mulifs) - Music Library Filesystem creates a filesystem to organise your music files.
* [GoShort](https://github.com/pankajkhairnar/goShort) - GoShort is a URL shortener written in Golang and BoltDB for persistent key/value storage and for routing it's using high performent HTTPRouter.
* [torrent](https://github.com/anacrolix/torrent) - Full-featured BitTorrent client package and utilities in Go. BoltDB is a storage backend in development.
* [gopherpit](https://github.com/gopherpit/gopherpit) - A web service to manage Go remote import paths with custom domains
* [bolter](https://github.com/hasit/bolter) - Command-line app for viewing BoltDB file in your terminal.
* [boltcli](https://github.com/spacewander/boltcli) - the redis-cli for boltdb with Lua script support.
* [btcwallet](https://github.com/btcsuite/btcwallet) - A bitcoin wallet.
* [dcrwallet](https://github.com/decred/dcrwallet) - A wallet for the Decred cryptocurrency.
* [Ironsmith](https://github.com/timshannon/ironsmith) - A simple, script-driven continuous integration (build - > test -> release) tool, with no external dependencies
* [BoltHold](https://github.com/timshannon/bolthold) - An embeddable NoSQL store for Go types built on BoltDB
If you are using Bolt in a project please send a pull request to add it to the list.

View File

@ -1,30 +0,0 @@
package bolt
import (
"testing"
)
func TestTx_allocatePageStats(t *testing.T) {
f := newFreelist()
f.ids = []pgid{2, 3}
tx := &Tx{
db: &DB{
freelist: f,
pageSize: defaultPageSize,
},
meta: &meta{},
pages: make(map[pgid]*page),
}
prePageCnt := tx.Stats().PageCount
allocateCnt := f.free_count()
if _, err := tx.allocate(allocateCnt); err != nil {
t.Fatal(err)
}
if tx.Stats().PageCount != prePageCnt+allocateCnt {
t.Errorf("Allocated %d but got %d page in stats", allocateCnt, tx.Stats().PageCount)
}
}

View File

@ -1,18 +0,0 @@
version: "{build}"
os: Windows Server 2012 R2
clone_folder: c:\gopath\src\github.com\boltdb\bolt
environment:
GOPATH: c:\gopath
install:
- echo %PATH%
- echo %GOPATH%
- go version
- go env
- go get -v -t ./...
build_script:
- go test -v ./...

View File

@ -1,10 +0,0 @@
package bolt
// maxMapSize represents the largest mmap size supported by Bolt.
const maxMapSize = 0x7FFFFFFF // 2GB
// maxAllocSize is the size used when creating array pointers.
const maxAllocSize = 0xFFFFFFF
// Are unaligned load/stores broken on this arch?
var brokenUnaligned = false

View File

@ -1,10 +0,0 @@
package bolt
// maxMapSize represents the largest mmap size supported by Bolt.
const maxMapSize = 0xFFFFFFFFFFFF // 256TB
// maxAllocSize is the size used when creating array pointers.
const maxAllocSize = 0x7FFFFFFF
// Are unaligned load/stores broken on this arch?
var brokenUnaligned = false

View File

@ -1,28 +0,0 @@
package bolt
import "unsafe"
// maxMapSize represents the largest mmap size supported by Bolt.
const maxMapSize = 0x7FFFFFFF // 2GB
// maxAllocSize is the size used when creating array pointers.
const maxAllocSize = 0xFFFFFFF
// Are unaligned load/stores broken on this arch?
var brokenUnaligned bool
func init() {
// Simple check to see whether this arch handles unaligned load/stores
// correctly.
// ARM9 and older devices require load/stores to be from/to aligned
// addresses. If not, the lower 2 bits are cleared and that address is
// read in a jumbled up order.
// See http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.faqs/ka15414.html
raw := [6]byte{0xfe, 0xef, 0x11, 0x22, 0x22, 0x11}
val := *(*uint32)(unsafe.Pointer(uintptr(unsafe.Pointer(&raw)) + 2))
brokenUnaligned = val != 0x11222211
}

View File

@ -1,12 +0,0 @@
// +build arm64
package bolt
// maxMapSize represents the largest mmap size supported by Bolt.
const maxMapSize = 0xFFFFFFFFFFFF // 256TB
// maxAllocSize is the size used when creating array pointers.
const maxAllocSize = 0x7FFFFFFF
// Are unaligned load/stores broken on this arch?
var brokenUnaligned = false

View File

@ -1,10 +0,0 @@
package bolt
import (
"syscall"
)
// fdatasync flushes written data to a file descriptor.
func fdatasync(db *DB) error {
return syscall.Fdatasync(int(db.file.Fd()))
}

View File

@ -1,12 +0,0 @@
// +build mips64 mips64le
package bolt
// maxMapSize represents the largest mmap size supported by Bolt.
const maxMapSize = 0x8000000000 // 512GB
// maxAllocSize is the size used when creating array pointers.
const maxAllocSize = 0x7FFFFFFF
// Are unaligned load/stores broken on this arch?
var brokenUnaligned = false

View File

@ -1,12 +0,0 @@
// +build mips mipsle
package bolt
// maxMapSize represents the largest mmap size supported by Bolt.
const maxMapSize = 0x40000000 // 1GB
// maxAllocSize is the size used when creating array pointers.
const maxAllocSize = 0xFFFFFFF
// Are unaligned load/stores broken on this arch?
var brokenUnaligned = false

View File

@ -1,27 +0,0 @@
package bolt
import (
"syscall"
"unsafe"
)
const (
msAsync = 1 << iota // perform asynchronous writes
msSync // perform synchronous writes
msInvalidate // invalidate cached data
)
func msync(db *DB) error {
_, _, errno := syscall.Syscall(syscall.SYS_MSYNC, uintptr(unsafe.Pointer(db.data)), uintptr(db.datasz), msInvalidate)
if errno != 0 {
return errno
}
return nil
}
func fdatasync(db *DB) error {
if db.data != nil {
return msync(db)
}
return db.file.Sync()
}

View File

@ -1,12 +0,0 @@
// +build ppc
package bolt
// maxMapSize represents the largest mmap size supported by Bolt.
const maxMapSize = 0x7FFFFFFF // 2GB
// maxAllocSize is the size used when creating array pointers.
const maxAllocSize = 0xFFFFFFF
// Are unaligned load/stores broken on this arch?
var brokenUnaligned = false

View File

@ -1,12 +0,0 @@
// +build ppc64
package bolt
// maxMapSize represents the largest mmap size supported by Bolt.
const maxMapSize = 0xFFFFFFFFFFFF // 256TB
// maxAllocSize is the size used when creating array pointers.
const maxAllocSize = 0x7FFFFFFF
// Are unaligned load/stores broken on this arch?
var brokenUnaligned = false

View File

@ -1,12 +0,0 @@
// +build ppc64le
package bolt
// maxMapSize represents the largest mmap size supported by Bolt.
const maxMapSize = 0xFFFFFFFFFFFF // 256TB
// maxAllocSize is the size used when creating array pointers.
const maxAllocSize = 0x7FFFFFFF
// Are unaligned load/stores broken on this arch?
var brokenUnaligned = false

View File

@ -1,12 +0,0 @@
// +build s390x
package bolt
// maxMapSize represents the largest mmap size supported by Bolt.
const maxMapSize = 0xFFFFFFFFFFFF // 256TB
// maxAllocSize is the size used when creating array pointers.
const maxAllocSize = 0x7FFFFFFF
// Are unaligned load/stores broken on this arch?
var brokenUnaligned = false

View File

@ -1,94 +0,0 @@
// +build !windows,!plan9,!solaris
package bolt
import (
"fmt"
"os"
"syscall"
"time"
"unsafe"
)
// flock acquires an advisory lock on a file descriptor.
func flock(db *DB, mode os.FileMode, exclusive bool, timeout time.Duration) error {
var t time.Time
if timeout != 0 {
t = time.Now()
}
fd := db.file.Fd()
flag := syscall.LOCK_NB
if exclusive {
flag |= syscall.LOCK_EX
} else {
flag |= syscall.LOCK_SH
}
for {
// Attempt to obtain an exclusive lock.
err := syscall.Flock(int(fd), flag)
if err == nil {
return nil
} else if err != syscall.EWOULDBLOCK {
return err
}
// If we timed out then return an error.
if timeout != 0 && time.Since(t) > timeout-flockRetryTimeout {
return ErrTimeout
}
// Wait for a bit and try again.
time.Sleep(flockRetryTimeout)
}
}
// funlock releases an advisory lock on a file descriptor.
func funlock(db *DB) error {
return syscall.Flock(int(db.file.Fd()), syscall.LOCK_UN)
}
// mmap memory maps a DB's data file.
func mmap(db *DB, sz int) error {
// Map the data file to memory.
b, err := syscall.Mmap(int(db.file.Fd()), 0, sz, syscall.PROT_READ, syscall.MAP_SHARED|db.MmapFlags)
if err != nil {
return err
}
// Advise the kernel that the mmap is accessed randomly.
err = madvise(b, syscall.MADV_RANDOM)
if err != nil && err != syscall.ENOSYS {
// Ignore not implemented error in kernel because it still works.
return fmt.Errorf("madvise: %s", err)
}
// Save the original byte slice and convert to a byte array pointer.
db.dataref = b
db.data = (*[maxMapSize]byte)(unsafe.Pointer(&b[0]))
db.datasz = sz
return nil
}
// munmap unmaps a DB's data file from memory.
func munmap(db *DB) error {
// Ignore the unmap if we have no mapped data.
if db.dataref == nil {
return nil
}
// Unmap using the original byte slice.
err := syscall.Munmap(db.dataref)
db.dataref = nil
db.data = nil
db.datasz = 0
return err
}
// NOTE: This function is copied from stdlib because it is not available on darwin.
func madvise(b []byte, advice int) (err error) {
_, _, e1 := syscall.Syscall(syscall.SYS_MADVISE, uintptr(unsafe.Pointer(&b[0])), uintptr(len(b)), uintptr(advice))
if e1 != 0 {
err = e1
}
return
}

View File

@ -1,89 +0,0 @@
package bolt
import (
"fmt"
"os"
"syscall"
"time"
"unsafe"
"golang.org/x/sys/unix"
)
// flock acquires an advisory lock on a file descriptor.
func flock(db *DB, mode os.FileMode, exclusive bool, timeout time.Duration) error {
var t time.Time
if timeout != 0 {
t = time.Now()
}
fd := db.file.Fd()
var lockType int16
if exclusive {
lockType = syscall.F_WRLCK
} else {
lockType = syscall.F_RDLCK
}
for {
// Attempt to obtain an exclusive lock.
lock := syscall.Flock_t{Type: lockType}
err := syscall.FcntlFlock(fd, syscall.F_SETLK, &lock)
if err == nil {
return nil
} else if err != syscall.EAGAIN {
return err
}
// If we timed out then return an error.
if timeout != 0 && time.Since(t) > timeout-flockRetryTimeout {
return ErrTimeout
}
// Wait for a bit and try again.
time.Sleep(flockRetryTimeout)
}
}
// funlock releases an advisory lock on a file descriptor.
func funlock(db *DB) error {
var lock syscall.Flock_t
lock.Start = 0
lock.Len = 0
lock.Type = syscall.F_UNLCK
lock.Whence = 0
return syscall.FcntlFlock(uintptr(db.file.Fd()), syscall.F_SETLK, &lock)
}
// mmap memory maps a DB's data file.
func mmap(db *DB, sz int) error {
// Map the data file to memory.
b, err := unix.Mmap(int(db.file.Fd()), 0, sz, syscall.PROT_READ, syscall.MAP_SHARED|db.MmapFlags)
if err != nil {
return err
}
// Advise the kernel that the mmap is accessed randomly.
if err := unix.Madvise(b, syscall.MADV_RANDOM); err != nil {
return fmt.Errorf("madvise: %s", err)
}
// Save the original byte slice and convert to a byte array pointer.
db.dataref = b
db.data = (*[maxMapSize]byte)(unsafe.Pointer(&b[0]))
db.datasz = sz
return nil
}
// munmap unmaps a DB's data file from memory.
func munmap(db *DB) error {
// Ignore the unmap if we have no mapped data.
if db.dataref == nil {
return nil
}
// Unmap using the original byte slice.
err := unix.Munmap(db.dataref)
db.dataref = nil
db.data = nil
db.datasz = 0
return err
}

View File

@ -1,145 +0,0 @@
package bolt
import (
"fmt"
"os"
"syscall"
"time"
"unsafe"
)
// LockFileEx code derived from golang build filemutex_windows.go @ v1.5.1
var (
modkernel32 = syscall.NewLazyDLL("kernel32.dll")
procLockFileEx = modkernel32.NewProc("LockFileEx")
procUnlockFileEx = modkernel32.NewProc("UnlockFileEx")
)
const (
lockExt = ".lock"
// see https://msdn.microsoft.com/en-us/library/windows/desktop/aa365203(v=vs.85).aspx
flagLockExclusive = 2
flagLockFailImmediately = 1
// see https://msdn.microsoft.com/en-us/library/windows/desktop/ms681382(v=vs.85).aspx
errLockViolation syscall.Errno = 0x21
)
func lockFileEx(h syscall.Handle, flags, reserved, locklow, lockhigh uint32, ol *syscall.Overlapped) (err error) {
r, _, err := procLockFileEx.Call(uintptr(h), uintptr(flags), uintptr(reserved), uintptr(locklow), uintptr(lockhigh), uintptr(unsafe.Pointer(ol)))
if r == 0 {
return err
}
return nil
}
func unlockFileEx(h syscall.Handle, reserved, locklow, lockhigh uint32, ol *syscall.Overlapped) (err error) {
r, _, err := procUnlockFileEx.Call(uintptr(h), uintptr(reserved), uintptr(locklow), uintptr(lockhigh), uintptr(unsafe.Pointer(ol)), 0)
if r == 0 {
return err
}
return nil
}
// fdatasync flushes written data to a file descriptor.
func fdatasync(db *DB) error {
return db.file.Sync()
}
// flock acquires an advisory lock on a file descriptor.
func flock(db *DB, mode os.FileMode, exclusive bool, timeout time.Duration) error {
// Create a separate lock file on windows because a process
// cannot share an exclusive lock on the same file. This is
// needed during Tx.WriteTo().
f, err := os.OpenFile(db.path+lockExt, os.O_CREATE, mode)
if err != nil {
return err
}
db.lockfile = f
var t time.Time
if timeout != 0 {
t = time.Now()
}
fd := f.Fd()
var flag uint32 = flagLockFailImmediately
if exclusive {
flag |= flagLockExclusive
}
for {
// Attempt to obtain an exclusive lock.
err := lockFileEx(syscall.Handle(fd), flag, 0, 1, 0, &syscall.Overlapped{})
if err == nil {
return nil
} else if err != errLockViolation {
return err
}
// If we timed oumercit then return an error.
if timeout != 0 && time.Since(t) > timeout-flockRetryTimeout {
return ErrTimeout
}
// Wait for a bit and try again.
time.Sleep(flockRetryTimeout)
}
}
// funlock releases an advisory lock on a file descriptor.
func funlock(db *DB) error {
err := unlockFileEx(syscall.Handle(db.lockfile.Fd()), 0, 1, 0, &syscall.Overlapped{})
db.lockfile.Close()
os.Remove(db.path + lockExt)
return err
}
// mmap memory maps a DB's data file.
// Based on: https://github.com/edsrzf/mmap-go
func mmap(db *DB, sz int) error {
if !db.readOnly {
// Truncate the database to the size of the mmap.
if err := db.file.Truncate(int64(sz)); err != nil {
return fmt.Errorf("truncate: %s", err)
}
}
// Open a file mapping handle.
sizelo := uint32(sz >> 32)
sizehi := uint32(sz) & 0xffffffff
h, errno := syscall.CreateFileMapping(syscall.Handle(db.file.Fd()), nil, syscall.PAGE_READONLY, sizelo, sizehi, nil)
if h == 0 {
return os.NewSyscallError("CreateFileMapping", errno)
}
// Create the memory map.
addr, errno := syscall.MapViewOfFile(h, syscall.FILE_MAP_READ, 0, 0, uintptr(sz))
if addr == 0 {
return os.NewSyscallError("MapViewOfFile", errno)
}
// Close mapping handle.
if err := syscall.CloseHandle(syscall.Handle(h)); err != nil {
return os.NewSyscallError("CloseHandle", err)
}
// Convert to a byte array.
db.data = ((*[maxMapSize]byte)(unsafe.Pointer(addr)))
db.datasz = sz
return nil
}
// munmap unmaps a pointer from a file.
// Based on: https://github.com/edsrzf/mmap-go
func munmap(db *DB) error {
if db.data == nil {
return nil
}
addr := (uintptr)(unsafe.Pointer(&db.data[0]))
if err := syscall.UnmapViewOfFile(addr); err != nil {
return os.NewSyscallError("UnmapViewOfFile", err)
}
return nil
}

View File

@ -1,8 +0,0 @@
// +build !windows,!plan9,!linux,!openbsd
package bolt
// fdatasync flushes written data to a file descriptor.
func fdatasync(db *DB) error {
return db.file.Sync()
}

View File

@ -1,775 +0,0 @@
package bolt
import (
"bytes"
"fmt"
"unsafe"
)
const (
// MaxKeySize is the maximum length of a key, in bytes.
MaxKeySize = 32768
// MaxValueSize is the maximum length of a value, in bytes.
MaxValueSize = (1 << 31) - 2
)
const bucketHeaderSize = int(unsafe.Sizeof(bucket{}))
const (
minFillPercent = 0.1
maxFillPercent = 1.0
)
// DefaultFillPercent is the percentage that split pages are filled.
// This value can be changed by setting Bucket.FillPercent.
const DefaultFillPercent = 0.5
// Bucket represents a collection of key/value pairs inside the database.
type Bucket struct {
*bucket
tx *Tx // the associated transaction
buckets map[string]*Bucket // subbucket cache
page *page // inline page reference
rootNode *node // materialized node for the root page.
nodes map[pgid]*node // node cache
// Sets the threshold for filling nodes when they split. By default,
// the bucket will fill to 50% but it can be useful to increase this
// amount if you know that your write workloads are mostly append-only.
//
// This is non-persisted across transactions so it must be set in every Tx.
FillPercent float64
}
// bucket represents the on-file representation of a bucket.
// This is stored as the "value" of a bucket key. If the bucket is small enough,
// then its root page can be stored inline in the "value", after the bucket
// header. In the case of inline buckets, the "root" will be 0.
type bucket struct {
root pgid // page id of the bucket's root-level page
sequence uint64 // monotonically incrementing, used by NextSequence()
}
// newBucket returns a new bucket associated with a transaction.
func newBucket(tx *Tx) Bucket {
var b = Bucket{tx: tx, FillPercent: DefaultFillPercent}
if tx.writable {
b.buckets = make(map[string]*Bucket)
b.nodes = make(map[pgid]*node)
}
return b
}
// Tx returns the tx of the bucket.
func (b *Bucket) Tx() *Tx {
return b.tx
}
// Root returns the root of the bucket.
func (b *Bucket) Root() pgid {
return b.root
}
// Writable returns whether the bucket is writable.
func (b *Bucket) Writable() bool {
return b.tx.writable
}
// Cursor creates a cursor associated with the bucket.
// The cursor is only valid as long as the transaction is open.
// Do not use a cursor after the transaction is closed.
func (b *Bucket) Cursor() *Cursor {
// Update transaction statistics.
b.tx.stats.CursorCount++
// Allocate and return a cursor.
return &Cursor{
bucket: b,
stack: make([]elemRef, 0),
}
}
// Bucket retrieves a nested bucket by name.
// Returns nil if the bucket does not exist.
// The bucket instance is only valid for the lifetime of the transaction.
func (b *Bucket) Bucket(name []byte) *Bucket {
if b.buckets != nil {
if child := b.buckets[string(name)]; child != nil {
return child
}
}
// Move cursor to key.
c := b.Cursor()
k, v, flags := c.seek(name)
// Return nil if the key doesn't exist or it is not a bucket.
if !bytes.Equal(name, k) || (flags&bucketLeafFlag) == 0 {
return nil
}
// Otherwise create a bucket and cache it.
var child = b.openBucket(v)
if b.buckets != nil {
b.buckets[string(name)] = child
}
return child
}
// Helper method that re-interprets a sub-bucket value
// from a parent into a Bucket
func (b *Bucket) openBucket(value []byte) *Bucket {
var child = newBucket(b.tx)
// If unaligned load/stores are broken on this arch and value is
// unaligned simply clone to an aligned byte array.
unaligned := brokenUnaligned && uintptr(unsafe.Pointer(&value[0]))&3 != 0
if unaligned {
value = cloneBytes(value)
}
// If this is a writable transaction then we need to copy the bucket entry.
// Read-only transactions can point directly at the mmap entry.
if b.tx.writable && !unaligned {
child.bucket = &bucket{}
*child.bucket = *(*bucket)(unsafe.Pointer(&value[0]))
} else {
child.bucket = (*bucket)(unsafe.Pointer(&value[0]))
}
// Save a reference to the inline page if the bucket is inline.
if child.root == 0 {
child.page = (*page)(unsafe.Pointer(&value[bucketHeaderSize]))
}
return &child
}
// CreateBucket creates a new bucket at the given key and returns the new bucket.
// Returns an error if the key already exists, if the bucket name is blank, or if the bucket name is too long.
// The bucket instance is only valid for the lifetime of the transaction.
func (b *Bucket) CreateBucket(key []byte) (*Bucket, error) {
if b.tx.db == nil {
return nil, ErrTxClosed
} else if !b.tx.writable {
return nil, ErrTxNotWritable
} else if len(key) == 0 {
return nil, ErrBucketNameRequired
}
// Move cursor to correct position.
c := b.Cursor()
k, _, flags := c.seek(key)
// Return an error if there is an existing key.
if bytes.Equal(key, k) {
if (flags & bucketLeafFlag) != 0 {
return nil, ErrBucketExists
}
return nil, ErrIncompatibleValue
}
// Create empty, inline bucket.
var bucket = Bucket{
bucket: &bucket{},
rootNode: &node{isLeaf: true},
FillPercent: DefaultFillPercent,
}
var value = bucket.write()
// Insert into node.
key = cloneBytes(key)
c.node().put(key, key, value, 0, bucketLeafFlag)
// Since subbuckets are not allowed on inline buckets, we need to
// dereference the inline page, if it exists. This will cause the bucket
// to be treated as a regular, non-inline bucket for the rest of the tx.
b.page = nil
return b.Bucket(key), nil
}
// CreateBucketIfNotExists creates a new bucket if it doesn't already exist and returns a reference to it.
// Returns an error if the bucket name is blank, or if the bucket name is too long.
// The bucket instance is only valid for the lifetime of the transaction.
func (b *Bucket) CreateBucketIfNotExists(key []byte) (*Bucket, error) {
child, err := b.CreateBucket(key)
if err == ErrBucketExists {
return b.Bucket(key), nil
} else if err != nil {
return nil, err
}
return child, nil
}
// DeleteBucket deletes a bucket at the given key.
// Returns an error if the bucket does not exists, or if the key represents a non-bucket value.
func (b *Bucket) DeleteBucket(key []byte) error {
if b.tx.db == nil {
return ErrTxClosed
} else if !b.Writable() {
return ErrTxNotWritable
}
// Move cursor to correct position.
c := b.Cursor()
k, _, flags := c.seek(key)
// Return an error if bucket doesn't exist or is not a bucket.
if !bytes.Equal(key, k) {
return ErrBucketNotFound
} else if (flags & bucketLeafFlag) == 0 {
return ErrIncompatibleValue
}
// Recursively delete all child buckets.
child := b.Bucket(key)
err := child.ForEach(func(k, v []byte) error {
if v == nil {
if err := child.DeleteBucket(k); err != nil {
return fmt.Errorf("delete bucket: %s", err)
}
}
return nil
})
if err != nil {
return err
}
// Remove cached copy.
delete(b.buckets, string(key))
// Release all bucket pages to freelist.
child.nodes = nil
child.rootNode = nil
child.free()
// Delete the node if we have a matching key.
c.node().del(key)
return nil
}
// Get retrieves the value for a key in the bucket.
// Returns a nil value if the key does not exist or if the key is a nested bucket.
// The returned value is only valid for the life of the transaction.
func (b *Bucket) Get(key []byte) []byte {
k, v, flags := b.Cursor().seek(key)
// Return nil if this is a bucket.
if (flags & bucketLeafFlag) != 0 {
return nil
}
// If our target node isn't the same key as what's passed in then return nil.
if !bytes.Equal(key, k) {
return nil
}
return v
}
// Put sets the value for a key in the bucket.
// If the key exist then its previous value will be overwritten.
// Supplied value must remain valid for the life of the transaction.
// Returns an error if the bucket was created from a read-only transaction, if the key is blank, if the key is too large, or if the value is too large.
func (b *Bucket) Put(key []byte, value []byte) error {
if b.tx.db == nil {
return ErrTxClosed
} else if !b.Writable() {
return ErrTxNotWritable
} else if len(key) == 0 {
return ErrKeyRequired
} else if len(key) > MaxKeySize {
return ErrKeyTooLarge
} else if int64(len(value)) > MaxValueSize {
return ErrValueTooLarge
}
// Move cursor to correct position.
c := b.Cursor()
k, _, flags := c.seek(key)
// Return an error if there is an existing key with a bucket value.
if bytes.Equal(key, k) && (flags&bucketLeafFlag) != 0 {
return ErrIncompatibleValue
}
// Insert into node.
key = cloneBytes(key)
c.node().put(key, key, value, 0, 0)
return nil
}
// Delete removes a key from the bucket.
// If the key does not exist then nothing is done and a nil error is returned.
// Returns an error if the bucket was created from a read-only transaction.
func (b *Bucket) Delete(key []byte) error {
if b.tx.db == nil {
return ErrTxClosed
} else if !b.Writable() {
return ErrTxNotWritable
}
// Move cursor to correct position.
c := b.Cursor()
k, _, flags := c.seek(key)
// Return nil if the key doesn't exist.
if !bytes.Equal(key, k) {
return nil
}
// Return an error if there is already existing bucket value.
if (flags & bucketLeafFlag) != 0 {
return ErrIncompatibleValue
}
// Delete the node if we have a matching key.
c.node().del(key)
return nil
}
// Sequence returns the current integer for the bucket without incrementing it.
func (b *Bucket) Sequence() uint64 { return b.bucket.sequence }
// SetSequence updates the sequence number for the bucket.
func (b *Bucket) SetSequence(v uint64) error {
if b.tx.db == nil {
return ErrTxClosed
} else if !b.Writable() {
return ErrTxNotWritable
}
// Materialize the root node if it hasn't been already so that the
// bucket will be saved during commit.
if b.rootNode == nil {
_ = b.node(b.root, nil)
}
// Increment and return the sequence.
b.bucket.sequence = v
return nil
}
// NextSequence returns an autoincrementing integer for the bucket.
func (b *Bucket) NextSequence() (uint64, error) {
if b.tx.db == nil {
return 0, ErrTxClosed
} else if !b.Writable() {
return 0, ErrTxNotWritable
}
// Materialize the root node if it hasn't been already so that the
// bucket will be saved during commit.
if b.rootNode == nil {
_ = b.node(b.root, nil)
}
// Increment and return the sequence.
b.bucket.sequence++
return b.bucket.sequence, nil
}
// ForEach executes a function for each key/value pair in a bucket.
// If the provided function returns an error then the iteration is stopped and
// the error is returned to the caller. The provided function must not modify
// the bucket; this will result in undefined behavior.
func (b *Bucket) ForEach(fn func(k, v []byte) error) error {
if b.tx.db == nil {
return ErrTxClosed
}
c := b.Cursor()
for k, v := c.First(); k != nil; k, v = c.Next() {
if err := fn(k, v); err != nil {
return err
}
}
return nil
}
// Stat returns stats on a bucket.
func (b *Bucket) Stats() BucketStats {
var s, subStats BucketStats
pageSize := b.tx.db.pageSize
s.BucketN += 1
if b.root == 0 {
s.InlineBucketN += 1
}
b.forEachPage(func(p *page, depth int) {
if (p.flags & leafPageFlag) != 0 {
s.KeyN += int(p.count)
// used totals the used bytes for the page
used := pageHeaderSize
if p.count != 0 {
// If page has any elements, add all element headers.
used += leafPageElementSize * int(p.count-1)
// Add all element key, value sizes.
// The computation takes advantage of the fact that the position
// of the last element's key/value equals to the total of the sizes
// of all previous elements' keys and values.
// It also includes the last element's header.
lastElement := p.leafPageElement(p.count - 1)
used += int(lastElement.pos + lastElement.ksize + lastElement.vsize)
}
if b.root == 0 {
// For inlined bucket just update the inline stats
s.InlineBucketInuse += used
} else {
// For non-inlined bucket update all the leaf stats
s.LeafPageN++
s.LeafInuse += used
s.LeafOverflowN += int(p.overflow)
// Collect stats from sub-buckets.
// Do that by iterating over all element headers
// looking for the ones with the bucketLeafFlag.
for i := uint16(0); i < p.count; i++ {
e := p.leafPageElement(i)
if (e.flags & bucketLeafFlag) != 0 {
// For any bucket element, open the element value
// and recursively call Stats on the contained bucket.
subStats.Add(b.openBucket(e.value()).Stats())
}
}
}
} else if (p.flags & branchPageFlag) != 0 {
s.BranchPageN++
lastElement := p.branchPageElement(p.count - 1)
// used totals the used bytes for the page
// Add header and all element headers.
used := pageHeaderSize + (branchPageElementSize * int(p.count-1))
// Add size of all keys and values.
// Again, use the fact that last element's position equals to
// the total of key, value sizes of all previous elements.
used += int(lastElement.pos + lastElement.ksize)
s.BranchInuse += used
s.BranchOverflowN += int(p.overflow)
}
// Keep track of maximum page depth.
if depth+1 > s.Depth {
s.Depth = (depth + 1)
}
})
// Alloc stats can be computed from page counts and pageSize.
s.BranchAlloc = (s.BranchPageN + s.BranchOverflowN) * pageSize
s.LeafAlloc = (s.LeafPageN + s.LeafOverflowN) * pageSize
// Add the max depth of sub-buckets to get total nested depth.
s.Depth += subStats.Depth
// Add the stats for all sub-buckets
s.Add(subStats)
return s
}
// forEachPage iterates over every page in a bucket, including inline pages.
func (b *Bucket) forEachPage(fn func(*page, int)) {
// If we have an inline page then just use that.
if b.page != nil {
fn(b.page, 0)
return
}
// Otherwise traverse the page hierarchy.
b.tx.forEachPage(b.root, 0, fn)
}
// forEachPageNode iterates over every page (or node) in a bucket.
// This also includes inline pages.
func (b *Bucket) forEachPageNode(fn func(*page, *node, int)) {
// If we have an inline page or root node then just use that.
if b.page != nil {
fn(b.page, nil, 0)
return
}
b._forEachPageNode(b.root, 0, fn)
}
func (b *Bucket) _forEachPageNode(pgid pgid, depth int, fn func(*page, *node, int)) {
var p, n = b.pageNode(pgid)
// Execute function.
fn(p, n, depth)
// Recursively loop over children.
if p != nil {
if (p.flags & branchPageFlag) != 0 {
for i := 0; i < int(p.count); i++ {
elem := p.branchPageElement(uint16(i))
b._forEachPageNode(elem.pgid, depth+1, fn)
}
}
} else {
if !n.isLeaf {
for _, inode := range n.inodes {
b._forEachPageNode(inode.pgid, depth+1, fn)
}
}
}
}
// spill writes all the nodes for this bucket to dirty pages.
func (b *Bucket) spill() error {
// Spill all child buckets first.
for name, child := range b.buckets {
// If the child bucket is small enough and it has no child buckets then
// write it inline into the parent bucket's page. Otherwise spill it
// like a normal bucket and make the parent value a pointer to the page.
var value []byte
if child.inlineable() {
child.free()
value = child.write()
} else {
if err := child.spill(); err != nil {
return err
}
// Update the child bucket header in this bucket.
value = make([]byte, unsafe.Sizeof(bucket{}))
var bucket = (*bucket)(unsafe.Pointer(&value[0]))
*bucket = *child.bucket
}
// Skip writing the bucket if there are no materialized nodes.
if child.rootNode == nil {
continue
}
// Update parent node.
var c = b.Cursor()
k, _, flags := c.seek([]byte(name))
if !bytes.Equal([]byte(name), k) {
panic(fmt.Sprintf("misplaced bucket header: %x -> %x", []byte(name), k))
}
if flags&bucketLeafFlag == 0 {
panic(fmt.Sprintf("unexpected bucket header flag: %x", flags))
}
c.node().put([]byte(name), []byte(name), value, 0, bucketLeafFlag)
}
// Ignore if there's not a materialized root node.
if b.rootNode == nil {
return nil
}
// Spill nodes.
if err := b.rootNode.spill(); err != nil {
return err
}
b.rootNode = b.rootNode.root()
// Update the root node for this bucket.
if b.rootNode.pgid >= b.tx.meta.pgid {
panic(fmt.Sprintf("pgid (%d) above high water mark (%d)", b.rootNode.pgid, b.tx.meta.pgid))
}
b.root = b.rootNode.pgid
return nil
}
// inlineable returns true if a bucket is small enough to be written inline
// and if it contains no subbuckets. Otherwise returns false.
func (b *Bucket) inlineable() bool {
var n = b.rootNode
// Bucket must only contain a single leaf node.
if n == nil || !n.isLeaf {
return false
}
// Bucket is not inlineable if it contains subbuckets or if it goes beyond
// our threshold for inline bucket size.
var size = pageHeaderSize
for _, inode := range n.inodes {
size += leafPageElementSize + len(inode.key) + len(inode.value)
if inode.flags&bucketLeafFlag != 0 {
return false
} else if size > b.maxInlineBucketSize() {
return false
}
}
return true
}
// Returns the maximum total size of a bucket to make it a candidate for inlining.
func (b *Bucket) maxInlineBucketSize() int {
return b.tx.db.pageSize / 4
}
// write allocates and writes a bucket to a byte slice.
func (b *Bucket) write() []byte {
// Allocate the appropriate size.
var n = b.rootNode
var value = make([]byte, bucketHeaderSize+n.size())
// Write a bucket header.
var bucket = (*bucket)(unsafe.Pointer(&value[0]))
*bucket = *b.bucket
// Convert byte slice to a fake page and write the root node.
var p = (*page)(unsafe.Pointer(&value[bucketHeaderSize]))
n.write(p)
return value
}
// rebalance attempts to balance all nodes.
func (b *Bucket) rebalance() {
for _, n := range b.nodes {
n.rebalance()
}
for _, child := range b.buckets {
child.rebalance()
}
}
// node creates a node from a page and associates it with a given parent.
func (b *Bucket) node(pgid pgid, parent *node) *node {
_assert(b.nodes != nil, "nodes map expected")
// Retrieve node if it's already been created.
if n := b.nodes[pgid]; n != nil {
return n
}
// Otherwise create a node and cache it.
n := &node{bucket: b, parent: parent}
if parent == nil {
b.rootNode = n
} else {
parent.children = append(parent.children, n)
}
// Use the inline page if this is an inline bucket.
var p = b.page
if p == nil {
p = b.tx.page(pgid)
}
// Read the page into the node and cache it.
n.read(p)
b.nodes[pgid] = n
// Update statistics.
b.tx.stats.NodeCount++
return n
}
// free recursively frees all pages in the bucket.
func (b *Bucket) free() {
if b.root == 0 {
return
}
var tx = b.tx
b.forEachPageNode(func(p *page, n *node, _ int) {
if p != nil {
tx.db.freelist.free(tx.meta.txid, p)
} else {
n.free()
}
})
b.root = 0
}
// dereference removes all references to the old mmap.
func (b *Bucket) dereference() {
if b.rootNode != nil {
b.rootNode.root().dereference()
}
for _, child := range b.buckets {
child.dereference()
}
}
// pageNode returns the in-memory node, if it exists.
// Otherwise returns the underlying page.
func (b *Bucket) pageNode(id pgid) (*page, *node) {
// Inline buckets have a fake page embedded in their value so treat them
// differently. We'll return the rootNode (if available) or the fake page.
if b.root == 0 {
if id != 0 {
panic(fmt.Sprintf("inline bucket non-zero page access(2): %d != 0", id))
}
if b.rootNode != nil {
return nil, b.rootNode
}
return b.page, nil
}
// Check the node cache for non-inline buckets.
if b.nodes != nil {
if n := b.nodes[id]; n != nil {
return nil, n
}
}
// Finally lookup the page from the transaction if no node is materialized.
return b.tx.page(id), nil
}
// BucketStats records statistics about resources used by a bucket.
type BucketStats struct {
// Page count statistics.
BranchPageN int // number of logical branch pages
BranchOverflowN int // number of physical branch overflow pages
LeafPageN int // number of logical leaf pages
LeafOverflowN int // number of physical leaf overflow pages
// Tree statistics.
KeyN int // number of keys/value pairs
Depth int // number of levels in B+tree
// Page size utilization.
BranchAlloc int // bytes allocated for physical branch pages
BranchInuse int // bytes actually used for branch data
LeafAlloc int // bytes allocated for physical leaf pages
LeafInuse int // bytes actually used for leaf data
// Bucket statistics
BucketN int // total number of buckets including the top bucket
InlineBucketN int // total number on inlined buckets
InlineBucketInuse int // bytes used for inlined buckets (also accounted for in LeafInuse)
}
func (s *BucketStats) Add(other BucketStats) {
s.BranchPageN += other.BranchPageN
s.BranchOverflowN += other.BranchOverflowN
s.LeafPageN += other.LeafPageN
s.LeafOverflowN += other.LeafOverflowN
s.KeyN += other.KeyN
if s.Depth < other.Depth {
s.Depth = other.Depth
}
s.BranchAlloc += other.BranchAlloc
s.BranchInuse += other.BranchInuse
s.LeafAlloc += other.LeafAlloc
s.LeafInuse += other.LeafInuse
s.BucketN += other.BucketN
s.InlineBucketN += other.InlineBucketN
s.InlineBucketInuse += other.InlineBucketInuse
}
// cloneBytes returns a copy of a given slice.
func cloneBytes(v []byte) []byte {
var clone = make([]byte, len(v))
copy(clone, v)
return clone
}

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -1,456 +0,0 @@
package main_test
import (
"bytes"
crypto "crypto/rand"
"encoding/binary"
"fmt"
"io"
"io/ioutil"
"math/rand"
"os"
"strconv"
"testing"
"github.com/coreos/bbolt"
"github.com/coreos/bbolt/cmd/bolt"
)
// Ensure the "info" command can print information about a database.
func TestInfoCommand_Run(t *testing.T) {
db := MustOpen(0666, nil)
db.DB.Close()
defer db.Close()
// Run the info command.
m := NewMain()
if err := m.Run("info", db.Path); err != nil {
t.Fatal(err)
}
}
// Ensure the "stats" command executes correctly with an empty database.
func TestStatsCommand_Run_EmptyDatabase(t *testing.T) {
// Ignore
if os.Getpagesize() != 4096 {
t.Skip("system does not use 4KB page size")
}
db := MustOpen(0666, nil)
defer db.Close()
db.DB.Close()
// Generate expected result.
exp := "Aggregate statistics for 0 buckets\n\n" +
"Page count statistics\n" +
"\tNumber of logical branch pages: 0\n" +
"\tNumber of physical branch overflow pages: 0\n" +
"\tNumber of logical leaf pages: 0\n" +
"\tNumber of physical leaf overflow pages: 0\n" +
"Tree statistics\n" +
"\tNumber of keys/value pairs: 0\n" +
"\tNumber of levels in B+tree: 0\n" +
"Page size utilization\n" +
"\tBytes allocated for physical branch pages: 0\n" +
"\tBytes actually used for branch data: 0 (0%)\n" +
"\tBytes allocated for physical leaf pages: 0\n" +
"\tBytes actually used for leaf data: 0 (0%)\n" +
"Bucket statistics\n" +
"\tTotal number of buckets: 0\n" +
"\tTotal number on inlined buckets: 0 (0%)\n" +
"\tBytes used for inlined buckets: 0 (0%)\n"
// Run the command.
m := NewMain()
if err := m.Run("stats", db.Path); err != nil {
t.Fatal(err)
} else if m.Stdout.String() != exp {
t.Fatalf("unexpected stdout:\n\n%s", m.Stdout.String())
}
}
// Ensure the "stats" command can execute correctly.
func TestStatsCommand_Run(t *testing.T) {
// Ignore
if os.Getpagesize() != 4096 {
t.Skip("system does not use 4KB page size")
}
db := MustOpen(0666, nil)
defer db.Close()
if err := db.Update(func(tx *bolt.Tx) error {
// Create "foo" bucket.
b, err := tx.CreateBucket([]byte("foo"))
if err != nil {
return err
}
for i := 0; i < 10; i++ {
if err := b.Put([]byte(strconv.Itoa(i)), []byte(strconv.Itoa(i))); err != nil {
return err
}
}
// Create "bar" bucket.
b, err = tx.CreateBucket([]byte("bar"))
if err != nil {
return err
}
for i := 0; i < 100; i++ {
if err := b.Put([]byte(strconv.Itoa(i)), []byte(strconv.Itoa(i))); err != nil {
return err
}
}
// Create "baz" bucket.
b, err = tx.CreateBucket([]byte("baz"))
if err != nil {
return err
}
if err := b.Put([]byte("key"), []byte("value")); err != nil {
return err
}
return nil
}); err != nil {
t.Fatal(err)
}
db.DB.Close()
// Generate expected result.
exp := "Aggregate statistics for 3 buckets\n\n" +
"Page count statistics\n" +
"\tNumber of logical branch pages: 0\n" +
"\tNumber of physical branch overflow pages: 0\n" +
"\tNumber of logical leaf pages: 1\n" +
"\tNumber of physical leaf overflow pages: 0\n" +
"Tree statistics\n" +
"\tNumber of keys/value pairs: 111\n" +
"\tNumber of levels in B+tree: 1\n" +
"Page size utilization\n" +
"\tBytes allocated for physical branch pages: 0\n" +
"\tBytes actually used for branch data: 0 (0%)\n" +
"\tBytes allocated for physical leaf pages: 4096\n" +
"\tBytes actually used for leaf data: 1996 (48%)\n" +
"Bucket statistics\n" +
"\tTotal number of buckets: 3\n" +
"\tTotal number on inlined buckets: 2 (66%)\n" +
"\tBytes used for inlined buckets: 236 (11%)\n"
// Run the command.
m := NewMain()
if err := m.Run("stats", db.Path); err != nil {
t.Fatal(err)
} else if m.Stdout.String() != exp {
t.Fatalf("unexpected stdout:\n\n%s", m.Stdout.String())
}
}
// Ensure the "buckets" command can print a list of buckets.
func TestBucketsCommand_Run(t *testing.T) {
db := MustOpen(0666, nil)
defer db.Close()
if err := db.Update(func(tx *bolt.Tx) error {
for _, name := range []string{"foo", "bar", "baz"} {
_, err := tx.CreateBucket([]byte(name))
if err != nil {
return err
}
}
return nil
}); err != nil {
t.Fatal(err)
}
db.DB.Close()
expected := "bar\nbaz\nfoo\n"
// Run the command.
m := NewMain()
if err := m.Run("buckets", db.Path); err != nil {
t.Fatal(err)
} else if actual := m.Stdout.String(); actual != expected {
t.Fatalf("unexpected stdout:\n\n%s", actual)
}
}
// Ensure the "keys" command can print a list of keys for a bucket.
func TestKeysCommand_Run(t *testing.T) {
db := MustOpen(0666, nil)
defer db.Close()
if err := db.Update(func(tx *bolt.Tx) error {
for _, name := range []string{"foo", "bar"} {
b, err := tx.CreateBucket([]byte(name))
if err != nil {
return err
}
for i := 0; i < 3; i++ {
key := fmt.Sprintf("%s-%d", name, i)
if err := b.Put([]byte(key), []byte{0}); err != nil {
return err
}
}
}
return nil
}); err != nil {
t.Fatal(err)
}
db.DB.Close()
expected := "foo-0\nfoo-1\nfoo-2\n"
// Run the command.
m := NewMain()
if err := m.Run("keys", db.Path, "foo"); err != nil {
t.Fatal(err)
} else if actual := m.Stdout.String(); actual != expected {
t.Fatalf("unexpected stdout:\n\n%s", actual)
}
}
// Ensure the "get" command can print the value of a key in a bucket.
func TestGetCommand_Run(t *testing.T) {
db := MustOpen(0666, nil)
defer db.Close()
if err := db.Update(func(tx *bolt.Tx) error {
for _, name := range []string{"foo", "bar"} {
b, err := tx.CreateBucket([]byte(name))
if err != nil {
return err
}
for i := 0; i < 3; i++ {
key := fmt.Sprintf("%s-%d", name, i)
val := fmt.Sprintf("val-%s-%d", name, i)
if err := b.Put([]byte(key), []byte(val)); err != nil {
return err
}
}
}
return nil
}); err != nil {
t.Fatal(err)
}
db.DB.Close()
expected := "val-foo-1\n"
// Run the command.
m := NewMain()
if err := m.Run("get", db.Path, "foo", "foo-1"); err != nil {
t.Fatal(err)
} else if actual := m.Stdout.String(); actual != expected {
t.Fatalf("unexpected stdout:\n\n%s", actual)
}
}
// Main represents a test wrapper for main.Main that records output.
type Main struct {
*main.Main
Stdin bytes.Buffer
Stdout bytes.Buffer
Stderr bytes.Buffer
}
// NewMain returns a new instance of Main.
func NewMain() *Main {
m := &Main{Main: main.NewMain()}
m.Main.Stdin = &m.Stdin
m.Main.Stdout = &m.Stdout
m.Main.Stderr = &m.Stderr
return m
}
// MustOpen creates a Bolt database in a temporary location.
func MustOpen(mode os.FileMode, options *bolt.Options) *DB {
// Create temporary path.
f, _ := ioutil.TempFile("", "bolt-")
f.Close()
os.Remove(f.Name())
db, err := bolt.Open(f.Name(), mode, options)
if err != nil {
panic(err.Error())
}
return &DB{DB: db, Path: f.Name()}
}
// DB is a test wrapper for bolt.DB.
type DB struct {
*bolt.DB
Path string
}
// Close closes and removes the database.
func (db *DB) Close() error {
defer os.Remove(db.Path)
return db.DB.Close()
}
func TestCompactCommand_Run(t *testing.T) {
var s int64
if err := binary.Read(crypto.Reader, binary.BigEndian, &s); err != nil {
t.Fatal(err)
}
rand.Seed(s)
dstdb := MustOpen(0666, nil)
dstdb.Close()
// fill the db
db := MustOpen(0666, nil)
if err := db.Update(func(tx *bolt.Tx) error {
n := 2 + rand.Intn(5)
for i := 0; i < n; i++ {
k := []byte(fmt.Sprintf("b%d", i))
b, err := tx.CreateBucketIfNotExists(k)
if err != nil {
return err
}
if err := b.SetSequence(uint64(i)); err != nil {
return err
}
if err := fillBucket(b, append(k, '.')); err != nil {
return err
}
}
return nil
}); err != nil {
db.Close()
t.Fatal(err)
}
// make the db grow by adding large values, and delete them.
if err := db.Update(func(tx *bolt.Tx) error {
b, err := tx.CreateBucketIfNotExists([]byte("large_vals"))
if err != nil {
return err
}
n := 5 + rand.Intn(5)
for i := 0; i < n; i++ {
v := make([]byte, 1000*1000*(1+rand.Intn(5)))
_, err := crypto.Read(v)
if err != nil {
return err
}
if err := b.Put([]byte(fmt.Sprintf("l%d", i)), v); err != nil {
return err
}
}
return nil
}); err != nil {
db.Close()
t.Fatal(err)
}
if err := db.Update(func(tx *bolt.Tx) error {
c := tx.Bucket([]byte("large_vals")).Cursor()
for k, _ := c.First(); k != nil; k, _ = c.Next() {
if err := c.Delete(); err != nil {
return err
}
}
return tx.DeleteBucket([]byte("large_vals"))
}); err != nil {
db.Close()
t.Fatal(err)
}
db.DB.Close()
defer db.Close()
defer dstdb.Close()
dbChk, err := chkdb(db.Path)
if err != nil {
t.Fatal(err)
}
m := NewMain()
if err := m.Run("compact", "-o", dstdb.Path, db.Path); err != nil {
t.Fatal(err)
}
dbChkAfterCompact, err := chkdb(db.Path)
if err != nil {
t.Fatal(err)
}
dstdbChk, err := chkdb(dstdb.Path)
if err != nil {
t.Fatal(err)
}
if !bytes.Equal(dbChk, dbChkAfterCompact) {
t.Error("the original db has been touched")
}
if !bytes.Equal(dbChk, dstdbChk) {
t.Error("the compacted db data isn't the same than the original db")
}
}
func fillBucket(b *bolt.Bucket, prefix []byte) error {
n := 10 + rand.Intn(50)
for i := 0; i < n; i++ {
v := make([]byte, 10*(1+rand.Intn(4)))
_, err := crypto.Read(v)
if err != nil {
return err
}
k := append(prefix, []byte(fmt.Sprintf("k%d", i))...)
if err := b.Put(k, v); err != nil {
return err
}
}
// limit depth of subbuckets
s := 2 + rand.Intn(4)
if len(prefix) > (2*s + 1) {
return nil
}
n = 1 + rand.Intn(3)
for i := 0; i < n; i++ {
k := append(prefix, []byte(fmt.Sprintf("b%d", i))...)
sb, err := b.CreateBucket(k)
if err != nil {
return err
}
if err := fillBucket(sb, append(k, '.')); err != nil {
return err
}
}
return nil
}
func chkdb(path string) ([]byte, error) {
db, err := bolt.Open(path, 0666, nil)
if err != nil {
return nil, err
}
defer db.Close()
var buf bytes.Buffer
err = db.View(func(tx *bolt.Tx) error {
return tx.ForEach(func(name []byte, b *bolt.Bucket) error {
return walkBucket(b, name, nil, &buf)
})
})
if err != nil {
return nil, err
}
return buf.Bytes(), nil
}
func walkBucket(parent *bolt.Bucket, k []byte, v []byte, w io.Writer) error {
if _, err := fmt.Fprintf(w, "%d:%x=%x\n", parent.Sequence(), k, v); err != nil {
return err
}
// not a bucket, exit.
if v != nil {
return nil
}
return parent.ForEach(func(k, v []byte) error {
if v == nil {
return walkBucket(parent.Bucket(k), k, nil, w)
}
return walkBucket(parent, k, v, w)
})
}

View File

@ -1,396 +0,0 @@
package bolt
import (
"bytes"
"fmt"
"sort"
)
// Cursor represents an iterator that can traverse over all key/value pairs in a bucket in sorted order.
// Cursors see nested buckets with value == nil.
// Cursors can be obtained from a transaction and are valid as long as the transaction is open.
//
// Keys and values returned from the cursor are only valid for the life of the transaction.
//
// Changing data while traversing with a cursor may cause it to be invalidated
// and return unexpected keys and/or values. You must reposition your cursor
// after mutating data.
type Cursor struct {
bucket *Bucket
stack []elemRef
}
// Bucket returns the bucket that this cursor was created from.
func (c *Cursor) Bucket() *Bucket {
return c.bucket
}
// First moves the cursor to the first item in the bucket and returns its key and value.
// If the bucket is empty then a nil key and value are returned.
// The returned key and value are only valid for the life of the transaction.
func (c *Cursor) First() (key []byte, value []byte) {
_assert(c.bucket.tx.db != nil, "tx closed")
c.stack = c.stack[:0]
p, n := c.bucket.pageNode(c.bucket.root)
c.stack = append(c.stack, elemRef{page: p, node: n, index: 0})
c.first()
// If we land on an empty page then move to the next value.
// https://github.com/boltdb/bolt/issues/450
if c.stack[len(c.stack)-1].count() == 0 {
c.next()
}
k, v, flags := c.keyValue()
if (flags & uint32(bucketLeafFlag)) != 0 {
return k, nil
}
return k, v
}
// Last moves the cursor to the last item in the bucket and returns its key and value.
// If the bucket is empty then a nil key and value are returned.
// The returned key and value are only valid for the life of the transaction.
func (c *Cursor) Last() (key []byte, value []byte) {
_assert(c.bucket.tx.db != nil, "tx closed")
c.stack = c.stack[:0]
p, n := c.bucket.pageNode(c.bucket.root)
ref := elemRef{page: p, node: n}
ref.index = ref.count() - 1
c.stack = append(c.stack, ref)
c.last()
k, v, flags := c.keyValue()
if (flags & uint32(bucketLeafFlag)) != 0 {
return k, nil
}
return k, v
}
// Next moves the cursor to the next item in the bucket and returns its key and value.
// If the cursor is at the end of the bucket then a nil key and value are returned.
// The returned key and value are only valid for the life of the transaction.
func (c *Cursor) Next() (key []byte, value []byte) {
_assert(c.bucket.tx.db != nil, "tx closed")
k, v, flags := c.next()
if (flags & uint32(bucketLeafFlag)) != 0 {
return k, nil
}
return k, v
}
// Prev moves the cursor to the previous item in the bucket and returns its key and value.
// If the cursor is at the beginning of the bucket then a nil key and value are returned.
// The returned key and value are only valid for the life of the transaction.
func (c *Cursor) Prev() (key []byte, value []byte) {
_assert(c.bucket.tx.db != nil, "tx closed")
// Attempt to move back one element until we're successful.
// Move up the stack as we hit the beginning of each page in our stack.
for i := len(c.stack) - 1; i >= 0; i-- {
elem := &c.stack[i]
if elem.index > 0 {
elem.index--
break
}
c.stack = c.stack[:i]
}
// If we've hit the end then return nil.
if len(c.stack) == 0 {
return nil, nil
}
// Move down the stack to find the last element of the last leaf under this branch.
c.last()
k, v, flags := c.keyValue()
if (flags & uint32(bucketLeafFlag)) != 0 {
return k, nil
}
return k, v
}
// Seek moves the cursor to a given key and returns it.
// If the key does not exist then the next key is used. If no keys
// follow, a nil key is returned.
// The returned key and value are only valid for the life of the transaction.
func (c *Cursor) Seek(seek []byte) (key []byte, value []byte) {
k, v, flags := c.seek(seek)
// If we ended up after the last element of a page then move to the next one.
if ref := &c.stack[len(c.stack)-1]; ref.index >= ref.count() {
k, v, flags = c.next()
}
if k == nil {
return nil, nil
} else if (flags & uint32(bucketLeafFlag)) != 0 {
return k, nil
}
return k, v
}
// Delete removes the current key/value under the cursor from the bucket.
// Delete fails if current key/value is a bucket or if the transaction is not writable.
func (c *Cursor) Delete() error {
if c.bucket.tx.db == nil {
return ErrTxClosed
} else if !c.bucket.Writable() {
return ErrTxNotWritable
}
key, _, flags := c.keyValue()
// Return an error if current value is a bucket.
if (flags & bucketLeafFlag) != 0 {
return ErrIncompatibleValue
}
c.node().del(key)
return nil
}
// seek moves the cursor to a given key and returns it.
// If the key does not exist then the next key is used.
func (c *Cursor) seek(seek []byte) (key []byte, value []byte, flags uint32) {
_assert(c.bucket.tx.db != nil, "tx closed")
// Start from root page/node and traverse to correct page.
c.stack = c.stack[:0]
c.search(seek, c.bucket.root)
// If this is a bucket then return a nil value.
return c.keyValue()
}
// first moves the cursor to the first leaf element under the last page in the stack.
func (c *Cursor) first() {
for {
// Exit when we hit a leaf page.
var ref = &c.stack[len(c.stack)-1]
if ref.isLeaf() {
break
}
// Keep adding pages pointing to the first element to the stack.
var pgid pgid
if ref.node != nil {
pgid = ref.node.inodes[ref.index].pgid
} else {
pgid = ref.page.branchPageElement(uint16(ref.index)).pgid
}
p, n := c.bucket.pageNode(pgid)
c.stack = append(c.stack, elemRef{page: p, node: n, index: 0})
}
}
// last moves the cursor to the last leaf element under the last page in the stack.
func (c *Cursor) last() {
for {
// Exit when we hit a leaf page.
ref := &c.stack[len(c.stack)-1]
if ref.isLeaf() {
break
}
// Keep adding pages pointing to the last element in the stack.
var pgid pgid
if ref.node != nil {
pgid = ref.node.inodes[ref.index].pgid
} else {
pgid = ref.page.branchPageElement(uint16(ref.index)).pgid
}
p, n := c.bucket.pageNode(pgid)
var nextRef = elemRef{page: p, node: n}
nextRef.index = nextRef.count() - 1
c.stack = append(c.stack, nextRef)
}
}
// next moves to the next leaf element and returns the key and value.
// If the cursor is at the last leaf element then it stays there and returns nil.
func (c *Cursor) next() (key []byte, value []byte, flags uint32) {
for {
// Attempt to move over one element until we're successful.
// Move up the stack as we hit the end of each page in our stack.
var i int
for i = len(c.stack) - 1; i >= 0; i-- {
elem := &c.stack[i]
if elem.index < elem.count()-1 {
elem.index++
break
}
}
// If we've hit the root page then stop and return. This will leave the
// cursor on the last element of the last page.
if i == -1 {
return nil, nil, 0
}
// Otherwise start from where we left off in the stack and find the
// first element of the first leaf page.
c.stack = c.stack[:i+1]
c.first()
// If this is an empty page then restart and move back up the stack.
// https://github.com/boltdb/bolt/issues/450
if c.stack[len(c.stack)-1].count() == 0 {
continue
}
return c.keyValue()
}
}
// search recursively performs a binary search against a given page/node until it finds a given key.
func (c *Cursor) search(key []byte, pgid pgid) {
p, n := c.bucket.pageNode(pgid)
if p != nil && (p.flags&(branchPageFlag|leafPageFlag)) == 0 {
panic(fmt.Sprintf("invalid page type: %d: %x", p.id, p.flags))
}
e := elemRef{page: p, node: n}
c.stack = append(c.stack, e)
// If we're on a leaf page/node then find the specific node.
if e.isLeaf() {
c.nsearch(key)
return
}
if n != nil {
c.searchNode(key, n)
return
}
c.searchPage(key, p)
}
func (c *Cursor) searchNode(key []byte, n *node) {
var exact bool
index := sort.Search(len(n.inodes), func(i int) bool {
// TODO(benbjohnson): Optimize this range search. It's a bit hacky right now.
// sort.Search() finds the lowest index where f() != -1 but we need the highest index.
ret := bytes.Compare(n.inodes[i].key, key)
if ret == 0 {
exact = true
}
return ret != -1
})
if !exact && index > 0 {
index--
}
c.stack[len(c.stack)-1].index = index
// Recursively search to the next page.
c.search(key, n.inodes[index].pgid)
}
func (c *Cursor) searchPage(key []byte, p *page) {
// Binary search for the correct range.
inodes := p.branchPageElements()
var exact bool
index := sort.Search(int(p.count), func(i int) bool {
// TODO(benbjohnson): Optimize this range search. It's a bit hacky right now.
// sort.Search() finds the lowest index where f() != -1 but we need the highest index.
ret := bytes.Compare(inodes[i].key(), key)
if ret == 0 {
exact = true
}
return ret != -1
})
if !exact && index > 0 {
index--
}
c.stack[len(c.stack)-1].index = index
// Recursively search to the next page.
c.search(key, inodes[index].pgid)
}
// nsearch searches the leaf node on the top of the stack for a key.
func (c *Cursor) nsearch(key []byte) {
e := &c.stack[len(c.stack)-1]
p, n := e.page, e.node
// If we have a node then search its inodes.
if n != nil {
index := sort.Search(len(n.inodes), func(i int) bool {
return bytes.Compare(n.inodes[i].key, key) != -1
})
e.index = index
return
}
// If we have a page then search its leaf elements.
inodes := p.leafPageElements()
index := sort.Search(int(p.count), func(i int) bool {
return bytes.Compare(inodes[i].key(), key) != -1
})
e.index = index
}
// keyValue returns the key and value of the current leaf element.
func (c *Cursor) keyValue() ([]byte, []byte, uint32) {
ref := &c.stack[len(c.stack)-1]
// If the cursor is pointing to the end of page/node then return nil.
if ref.count() == 0 || ref.index >= ref.count() {
return nil, nil, 0
}
// Retrieve value from node.
if ref.node != nil {
inode := &ref.node.inodes[ref.index]
return inode.key, inode.value, inode.flags
}
// Or retrieve value from page.
elem := ref.page.leafPageElement(uint16(ref.index))
return elem.key(), elem.value(), elem.flags
}
// node returns the node that the cursor is currently positioned on.
func (c *Cursor) node() *node {
_assert(len(c.stack) > 0, "accessing a node with a zero-length cursor stack")
// If the top of the stack is a leaf node then just return it.
if ref := &c.stack[len(c.stack)-1]; ref.node != nil && ref.isLeaf() {
return ref.node
}
// Start from root and traverse down the hierarchy.
var n = c.stack[0].node
if n == nil {
n = c.bucket.node(c.stack[0].page.id, nil)
}
for _, ref := range c.stack[:len(c.stack)-1] {
_assert(!n.isLeaf, "expected branch node")
n = n.childAt(int(ref.index))
}
_assert(n.isLeaf, "expected leaf node")
return n
}
// elemRef represents a reference to an element on a given page/node.
type elemRef struct {
page *page
node *node
index int
}
// isLeaf returns whether the ref is pointing at a leaf page/node.
func (r *elemRef) isLeaf() bool {
if r.node != nil {
return r.node.isLeaf
}
return (r.page.flags & leafPageFlag) != 0
}
// count returns the number of inodes or page elements.
func (r *elemRef) count() int {
if r.node != nil {
return len(r.node.inodes)
}
return int(r.page.count)
}

View File

@ -1,817 +0,0 @@
package bolt_test
import (
"bytes"
"encoding/binary"
"fmt"
"log"
"os"
"reflect"
"sort"
"testing"
"testing/quick"
"github.com/coreos/bbolt"
)
// Ensure that a cursor can return a reference to the bucket that created it.
func TestCursor_Bucket(t *testing.T) {
db := MustOpenDB()
defer db.MustClose()
if err := db.Update(func(tx *bolt.Tx) error {
b, err := tx.CreateBucket([]byte("widgets"))
if err != nil {
t.Fatal(err)
}
if cb := b.Cursor().Bucket(); !reflect.DeepEqual(cb, b) {
t.Fatal("cursor bucket mismatch")
}
return nil
}); err != nil {
t.Fatal(err)
}
}
// Ensure that a Tx cursor can seek to the appropriate keys.
func TestCursor_Seek(t *testing.T) {
db := MustOpenDB()
defer db.MustClose()
if err := db.Update(func(tx *bolt.Tx) error {
b, err := tx.CreateBucket([]byte("widgets"))
if err != nil {
t.Fatal(err)
}
if err := b.Put([]byte("foo"), []byte("0001")); err != nil {
t.Fatal(err)
}
if err := b.Put([]byte("bar"), []byte("0002")); err != nil {
t.Fatal(err)
}
if err := b.Put([]byte("baz"), []byte("0003")); err != nil {
t.Fatal(err)
}
if _, err := b.CreateBucket([]byte("bkt")); err != nil {
t.Fatal(err)
}
return nil
}); err != nil {
t.Fatal(err)
}
if err := db.View(func(tx *bolt.Tx) error {
c := tx.Bucket([]byte("widgets")).Cursor()
// Exact match should go to the key.
if k, v := c.Seek([]byte("bar")); !bytes.Equal(k, []byte("bar")) {
t.Fatalf("unexpected key: %v", k)
} else if !bytes.Equal(v, []byte("0002")) {
t.Fatalf("unexpected value: %v", v)
}
// Inexact match should go to the next key.
if k, v := c.Seek([]byte("bas")); !bytes.Equal(k, []byte("baz")) {
t.Fatalf("unexpected key: %v", k)
} else if !bytes.Equal(v, []byte("0003")) {
t.Fatalf("unexpected value: %v", v)
}
// Low key should go to the first key.
if k, v := c.Seek([]byte("")); !bytes.Equal(k, []byte("bar")) {
t.Fatalf("unexpected key: %v", k)
} else if !bytes.Equal(v, []byte("0002")) {
t.Fatalf("unexpected value: %v", v)
}
// High key should return no key.
if k, v := c.Seek([]byte("zzz")); k != nil {
t.Fatalf("expected nil key: %v", k)
} else if v != nil {
t.Fatalf("expected nil value: %v", v)
}
// Buckets should return their key but no value.
if k, v := c.Seek([]byte("bkt")); !bytes.Equal(k, []byte("bkt")) {
t.Fatalf("unexpected key: %v", k)
} else if v != nil {
t.Fatalf("expected nil value: %v", v)
}
return nil
}); err != nil {
t.Fatal(err)
}
}
func TestCursor_Delete(t *testing.T) {
db := MustOpenDB()
defer db.MustClose()
const count = 1000
// Insert every other key between 0 and $count.
if err := db.Update(func(tx *bolt.Tx) error {
b, err := tx.CreateBucket([]byte("widgets"))
if err != nil {
t.Fatal(err)
}
for i := 0; i < count; i += 1 {
k := make([]byte, 8)
binary.BigEndian.PutUint64(k, uint64(i))
if err := b.Put(k, make([]byte, 100)); err != nil {
t.Fatal(err)
}
}
if _, err := b.CreateBucket([]byte("sub")); err != nil {
t.Fatal(err)
}
return nil
}); err != nil {
t.Fatal(err)
}
if err := db.Update(func(tx *bolt.Tx) error {
c := tx.Bucket([]byte("widgets")).Cursor()
bound := make([]byte, 8)
binary.BigEndian.PutUint64(bound, uint64(count/2))
for key, _ := c.First(); bytes.Compare(key, bound) < 0; key, _ = c.Next() {
if err := c.Delete(); err != nil {
t.Fatal(err)
}
}
c.Seek([]byte("sub"))
if err := c.Delete(); err != bolt.ErrIncompatibleValue {
t.Fatalf("unexpected error: %s", err)
}
return nil
}); err != nil {
t.Fatal(err)
}
if err := db.View(func(tx *bolt.Tx) error {
stats := tx.Bucket([]byte("widgets")).Stats()
if stats.KeyN != count/2+1 {
t.Fatalf("unexpected KeyN: %d", stats.KeyN)
}
return nil
}); err != nil {
t.Fatal(err)
}
}
// Ensure that a Tx cursor can seek to the appropriate keys when there are a
// large number of keys. This test also checks that seek will always move
// forward to the next key.
//
// Related: https://github.com/boltdb/bolt/pull/187
func TestCursor_Seek_Large(t *testing.T) {
db := MustOpenDB()
defer db.MustClose()
var count = 10000
// Insert every other key between 0 and $count.
if err := db.Update(func(tx *bolt.Tx) error {
b, err := tx.CreateBucket([]byte("widgets"))
if err != nil {
t.Fatal(err)
}
for i := 0; i < count; i += 100 {
for j := i; j < i+100; j += 2 {
k := make([]byte, 8)
binary.BigEndian.PutUint64(k, uint64(j))
if err := b.Put(k, make([]byte, 100)); err != nil {
t.Fatal(err)
}
}
}
return nil
}); err != nil {
t.Fatal(err)
}
if err := db.View(func(tx *bolt.Tx) error {
c := tx.Bucket([]byte("widgets")).Cursor()
for i := 0; i < count; i++ {
seek := make([]byte, 8)
binary.BigEndian.PutUint64(seek, uint64(i))
k, _ := c.Seek(seek)
// The last seek is beyond the end of the the range so
// it should return nil.
if i == count-1 {
if k != nil {
t.Fatal("expected nil key")
}
continue
}
// Otherwise we should seek to the exact key or the next key.
num := binary.BigEndian.Uint64(k)
if i%2 == 0 {
if num != uint64(i) {
t.Fatalf("unexpected num: %d", num)
}
} else {
if num != uint64(i+1) {
t.Fatalf("unexpected num: %d", num)
}
}
}
return nil
}); err != nil {
t.Fatal(err)
}
}
// Ensure that a cursor can iterate over an empty bucket without error.
func TestCursor_EmptyBucket(t *testing.T) {
db := MustOpenDB()
defer db.MustClose()
if err := db.Update(func(tx *bolt.Tx) error {
_, err := tx.CreateBucket([]byte("widgets"))
return err
}); err != nil {
t.Fatal(err)
}
if err := db.View(func(tx *bolt.Tx) error {
c := tx.Bucket([]byte("widgets")).Cursor()
k, v := c.First()
if k != nil {
t.Fatalf("unexpected key: %v", k)
} else if v != nil {
t.Fatalf("unexpected value: %v", v)
}
return nil
}); err != nil {
t.Fatal(err)
}
}
// Ensure that a Tx cursor can reverse iterate over an empty bucket without error.
func TestCursor_EmptyBucketReverse(t *testing.T) {
db := MustOpenDB()
defer db.MustClose()
if err := db.Update(func(tx *bolt.Tx) error {
_, err := tx.CreateBucket([]byte("widgets"))
return err
}); err != nil {
t.Fatal(err)
}
if err := db.View(func(tx *bolt.Tx) error {
c := tx.Bucket([]byte("widgets")).Cursor()
k, v := c.Last()
if k != nil {
t.Fatalf("unexpected key: %v", k)
} else if v != nil {
t.Fatalf("unexpected value: %v", v)
}
return nil
}); err != nil {
t.Fatal(err)
}
}
// Ensure that a Tx cursor can iterate over a single root with a couple elements.
func TestCursor_Iterate_Leaf(t *testing.T) {
db := MustOpenDB()
defer db.MustClose()
if err := db.Update(func(tx *bolt.Tx) error {
b, err := tx.CreateBucket([]byte("widgets"))
if err != nil {
t.Fatal(err)
}
if err := b.Put([]byte("baz"), []byte{}); err != nil {
t.Fatal(err)
}
if err := b.Put([]byte("foo"), []byte{0}); err != nil {
t.Fatal(err)
}
if err := b.Put([]byte("bar"), []byte{1}); err != nil {
t.Fatal(err)
}
return nil
}); err != nil {
t.Fatal(err)
}
tx, err := db.Begin(false)
if err != nil {
t.Fatal(err)
}
defer func() { _ = tx.Rollback() }()
c := tx.Bucket([]byte("widgets")).Cursor()
k, v := c.First()
if !bytes.Equal(k, []byte("bar")) {
t.Fatalf("unexpected key: %v", k)
} else if !bytes.Equal(v, []byte{1}) {
t.Fatalf("unexpected value: %v", v)
}
k, v = c.Next()
if !bytes.Equal(k, []byte("baz")) {
t.Fatalf("unexpected key: %v", k)
} else if !bytes.Equal(v, []byte{}) {
t.Fatalf("unexpected value: %v", v)
}
k, v = c.Next()
if !bytes.Equal(k, []byte("foo")) {
t.Fatalf("unexpected key: %v", k)
} else if !bytes.Equal(v, []byte{0}) {
t.Fatalf("unexpected value: %v", v)
}
k, v = c.Next()
if k != nil {
t.Fatalf("expected nil key: %v", k)
} else if v != nil {
t.Fatalf("expected nil value: %v", v)
}
k, v = c.Next()
if k != nil {
t.Fatalf("expected nil key: %v", k)
} else if v != nil {
t.Fatalf("expected nil value: %v", v)
}
if err := tx.Rollback(); err != nil {
t.Fatal(err)
}
}
// Ensure that a Tx cursor can iterate in reverse over a single root with a couple elements.
func TestCursor_LeafRootReverse(t *testing.T) {
db := MustOpenDB()
defer db.MustClose()
if err := db.Update(func(tx *bolt.Tx) error {
b, err := tx.CreateBucket([]byte("widgets"))
if err != nil {
t.Fatal(err)
}
if err := b.Put([]byte("baz"), []byte{}); err != nil {
t.Fatal(err)
}
if err := b.Put([]byte("foo"), []byte{0}); err != nil {
t.Fatal(err)
}
if err := b.Put([]byte("bar"), []byte{1}); err != nil {
t.Fatal(err)
}
return nil
}); err != nil {
t.Fatal(err)
}
tx, err := db.Begin(false)
if err != nil {
t.Fatal(err)
}
c := tx.Bucket([]byte("widgets")).Cursor()
if k, v := c.Last(); !bytes.Equal(k, []byte("foo")) {
t.Fatalf("unexpected key: %v", k)
} else if !bytes.Equal(v, []byte{0}) {
t.Fatalf("unexpected value: %v", v)
}
if k, v := c.Prev(); !bytes.Equal(k, []byte("baz")) {
t.Fatalf("unexpected key: %v", k)
} else if !bytes.Equal(v, []byte{}) {
t.Fatalf("unexpected value: %v", v)
}
if k, v := c.Prev(); !bytes.Equal(k, []byte("bar")) {
t.Fatalf("unexpected key: %v", k)
} else if !bytes.Equal(v, []byte{1}) {
t.Fatalf("unexpected value: %v", v)
}
if k, v := c.Prev(); k != nil {
t.Fatalf("expected nil key: %v", k)
} else if v != nil {
t.Fatalf("expected nil value: %v", v)
}
if k, v := c.Prev(); k != nil {
t.Fatalf("expected nil key: %v", k)
} else if v != nil {
t.Fatalf("expected nil value: %v", v)
}
if err := tx.Rollback(); err != nil {
t.Fatal(err)
}
}
// Ensure that a Tx cursor can restart from the beginning.
func TestCursor_Restart(t *testing.T) {
db := MustOpenDB()
defer db.MustClose()
if err := db.Update(func(tx *bolt.Tx) error {
b, err := tx.CreateBucket([]byte("widgets"))
if err != nil {
t.Fatal(err)
}
if err := b.Put([]byte("bar"), []byte{}); err != nil {
t.Fatal(err)
}
if err := b.Put([]byte("foo"), []byte{}); err != nil {
t.Fatal(err)
}
return nil
}); err != nil {
t.Fatal(err)
}
tx, err := db.Begin(false)
if err != nil {
t.Fatal(err)
}
c := tx.Bucket([]byte("widgets")).Cursor()
if k, _ := c.First(); !bytes.Equal(k, []byte("bar")) {
t.Fatalf("unexpected key: %v", k)
}
if k, _ := c.Next(); !bytes.Equal(k, []byte("foo")) {
t.Fatalf("unexpected key: %v", k)
}
if k, _ := c.First(); !bytes.Equal(k, []byte("bar")) {
t.Fatalf("unexpected key: %v", k)
}
if k, _ := c.Next(); !bytes.Equal(k, []byte("foo")) {
t.Fatalf("unexpected key: %v", k)
}
if err := tx.Rollback(); err != nil {
t.Fatal(err)
}
}
// Ensure that a cursor can skip over empty pages that have been deleted.
func TestCursor_First_EmptyPages(t *testing.T) {
db := MustOpenDB()
defer db.MustClose()
// Create 1000 keys in the "widgets" bucket.
if err := db.Update(func(tx *bolt.Tx) error {
b, err := tx.CreateBucket([]byte("widgets"))
if err != nil {
t.Fatal(err)
}
for i := 0; i < 1000; i++ {
if err := b.Put(u64tob(uint64(i)), []byte{}); err != nil {
t.Fatal(err)
}
}
return nil
}); err != nil {
t.Fatal(err)
}
// Delete half the keys and then try to iterate.
if err := db.Update(func(tx *bolt.Tx) error {
b := tx.Bucket([]byte("widgets"))
for i := 0; i < 600; i++ {
if err := b.Delete(u64tob(uint64(i))); err != nil {
t.Fatal(err)
}
}
c := b.Cursor()
var n int
for k, _ := c.First(); k != nil; k, _ = c.Next() {
n++
}
if n != 400 {
t.Fatalf("unexpected key count: %d", n)
}
return nil
}); err != nil {
t.Fatal(err)
}
}
// Ensure that a Tx can iterate over all elements in a bucket.
func TestCursor_QuickCheck(t *testing.T) {
f := func(items testdata) bool {
db := MustOpenDB()
defer db.MustClose()
// Bulk insert all values.
tx, err := db.Begin(true)
if err != nil {
t.Fatal(err)
}
b, err := tx.CreateBucket([]byte("widgets"))
if err != nil {
t.Fatal(err)
}
for _, item := range items {
if err := b.Put(item.Key, item.Value); err != nil {
t.Fatal(err)
}
}
if err := tx.Commit(); err != nil {
t.Fatal(err)
}
// Sort test data.
sort.Sort(items)
// Iterate over all items and check consistency.
var index = 0
tx, err = db.Begin(false)
if err != nil {
t.Fatal(err)
}
c := tx.Bucket([]byte("widgets")).Cursor()
for k, v := c.First(); k != nil && index < len(items); k, v = c.Next() {
if !bytes.Equal(k, items[index].Key) {
t.Fatalf("unexpected key: %v", k)
} else if !bytes.Equal(v, items[index].Value) {
t.Fatalf("unexpected value: %v", v)
}
index++
}
if len(items) != index {
t.Fatalf("unexpected item count: %v, expected %v", len(items), index)
}
if err := tx.Rollback(); err != nil {
t.Fatal(err)
}
return true
}
if err := quick.Check(f, qconfig()); err != nil {
t.Error(err)
}
}
// Ensure that a transaction can iterate over all elements in a bucket in reverse.
func TestCursor_QuickCheck_Reverse(t *testing.T) {
f := func(items testdata) bool {
db := MustOpenDB()
defer db.MustClose()
// Bulk insert all values.
tx, err := db.Begin(true)
if err != nil {
t.Fatal(err)
}
b, err := tx.CreateBucket([]byte("widgets"))
if err != nil {
t.Fatal(err)
}
for _, item := range items {
if err := b.Put(item.Key, item.Value); err != nil {
t.Fatal(err)
}
}
if err := tx.Commit(); err != nil {
t.Fatal(err)
}
// Sort test data.
sort.Sort(revtestdata(items))
// Iterate over all items and check consistency.
var index = 0
tx, err = db.Begin(false)
if err != nil {
t.Fatal(err)
}
c := tx.Bucket([]byte("widgets")).Cursor()
for k, v := c.Last(); k != nil && index < len(items); k, v = c.Prev() {
if !bytes.Equal(k, items[index].Key) {
t.Fatalf("unexpected key: %v", k)
} else if !bytes.Equal(v, items[index].Value) {
t.Fatalf("unexpected value: %v", v)
}
index++
}
if len(items) != index {
t.Fatalf("unexpected item count: %v, expected %v", len(items), index)
}
if err := tx.Rollback(); err != nil {
t.Fatal(err)
}
return true
}
if err := quick.Check(f, qconfig()); err != nil {
t.Error(err)
}
}
// Ensure that a Tx cursor can iterate over subbuckets.
func TestCursor_QuickCheck_BucketsOnly(t *testing.T) {
db := MustOpenDB()
defer db.MustClose()
if err := db.Update(func(tx *bolt.Tx) error {
b, err := tx.CreateBucket([]byte("widgets"))
if err != nil {
t.Fatal(err)
}
if _, err := b.CreateBucket([]byte("foo")); err != nil {
t.Fatal(err)
}
if _, err := b.CreateBucket([]byte("bar")); err != nil {
t.Fatal(err)
}
if _, err := b.CreateBucket([]byte("baz")); err != nil {
t.Fatal(err)
}
return nil
}); err != nil {
t.Fatal(err)
}
if err := db.View(func(tx *bolt.Tx) error {
var names []string
c := tx.Bucket([]byte("widgets")).Cursor()
for k, v := c.First(); k != nil; k, v = c.Next() {
names = append(names, string(k))
if v != nil {
t.Fatalf("unexpected value: %v", v)
}
}
if !reflect.DeepEqual(names, []string{"bar", "baz", "foo"}) {
t.Fatalf("unexpected names: %+v", names)
}
return nil
}); err != nil {
t.Fatal(err)
}
}
// Ensure that a Tx cursor can reverse iterate over subbuckets.
func TestCursor_QuickCheck_BucketsOnly_Reverse(t *testing.T) {
db := MustOpenDB()
defer db.MustClose()
if err := db.Update(func(tx *bolt.Tx) error {
b, err := tx.CreateBucket([]byte("widgets"))
if err != nil {
t.Fatal(err)
}
if _, err := b.CreateBucket([]byte("foo")); err != nil {
t.Fatal(err)
}
if _, err := b.CreateBucket([]byte("bar")); err != nil {
t.Fatal(err)
}
if _, err := b.CreateBucket([]byte("baz")); err != nil {
t.Fatal(err)
}
return nil
}); err != nil {
t.Fatal(err)
}
if err := db.View(func(tx *bolt.Tx) error {
var names []string
c := tx.Bucket([]byte("widgets")).Cursor()
for k, v := c.Last(); k != nil; k, v = c.Prev() {
names = append(names, string(k))
if v != nil {
t.Fatalf("unexpected value: %v", v)
}
}
if !reflect.DeepEqual(names, []string{"foo", "baz", "bar"}) {
t.Fatalf("unexpected names: %+v", names)
}
return nil
}); err != nil {
t.Fatal(err)
}
}
func ExampleCursor() {
// Open the database.
db, err := bolt.Open(tempfile(), 0666, nil)
if err != nil {
log.Fatal(err)
}
defer os.Remove(db.Path())
// Start a read-write transaction.
if err := db.Update(func(tx *bolt.Tx) error {
// Create a new bucket.
b, err := tx.CreateBucket([]byte("animals"))
if err != nil {
return err
}
// Insert data into a bucket.
if err := b.Put([]byte("dog"), []byte("fun")); err != nil {
log.Fatal(err)
}
if err := b.Put([]byte("cat"), []byte("lame")); err != nil {
log.Fatal(err)
}
if err := b.Put([]byte("liger"), []byte("awesome")); err != nil {
log.Fatal(err)
}
// Create a cursor for iteration.
c := b.Cursor()
// Iterate over items in sorted key order. This starts from the
// first key/value pair and updates the k/v variables to the
// next key/value on each iteration.
//
// The loop finishes at the end of the cursor when a nil key is returned.
for k, v := c.First(); k != nil; k, v = c.Next() {
fmt.Printf("A %s is %s.\n", k, v)
}
return nil
}); err != nil {
log.Fatal(err)
}
if err := db.Close(); err != nil {
log.Fatal(err)
}
// Output:
// A cat is lame.
// A dog is fun.
// A liger is awesome.
}
func ExampleCursor_reverse() {
// Open the database.
db, err := bolt.Open(tempfile(), 0666, nil)
if err != nil {
log.Fatal(err)
}
defer os.Remove(db.Path())
// Start a read-write transaction.
if err := db.Update(func(tx *bolt.Tx) error {
// Create a new bucket.
b, err := tx.CreateBucket([]byte("animals"))
if err != nil {
return err
}
// Insert data into a bucket.
if err := b.Put([]byte("dog"), []byte("fun")); err != nil {
log.Fatal(err)
}
if err := b.Put([]byte("cat"), []byte("lame")); err != nil {
log.Fatal(err)
}
if err := b.Put([]byte("liger"), []byte("awesome")); err != nil {
log.Fatal(err)
}
// Create a cursor for iteration.
c := b.Cursor()
// Iterate over items in reverse sorted key order. This starts
// from the last key/value pair and updates the k/v variables to
// the previous key/value on each iteration.
//
// The loop finishes at the beginning of the cursor when a nil key
// is returned.
for k, v := c.Last(); k != nil; k, v = c.Prev() {
fmt.Printf("A %s is %s.\n", k, v)
}
return nil
}); err != nil {
log.Fatal(err)
}
// Close the database to release the file lock.
if err := db.Close(); err != nil {
log.Fatal(err)
}
// Output:
// A liger is awesome.
// A dog is fun.
// A cat is lame.
}

1140
vendor/github.com/coreos/bbolt/db.go generated vendored

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -1,44 +0,0 @@
/*
Package bolt implements a low-level key/value store in pure Go. It supports
fully serializable transactions, ACID semantics, and lock-free MVCC with
multiple readers and a single writer. Bolt can be used for projects that
want a simple data store without the need to add large dependencies such as
Postgres or MySQL.
Bolt is a single-level, zero-copy, B+tree data store. This means that Bolt is
optimized for fast read access and does not require recovery in the event of a
system crash. Transactions which have not finished committing will simply be
rolled back in the event of a crash.
The design of Bolt is based on Howard Chu's LMDB database project.
Bolt currently works on Windows, Mac OS X, and Linux.
Basics
There are only a few types in Bolt: DB, Bucket, Tx, and Cursor. The DB is
a collection of buckets and is represented by a single file on disk. A bucket is
a collection of unique keys that are associated with values.
Transactions provide either read-only or read-write access to the database.
Read-only transactions can retrieve key/value pairs and can use Cursors to
iterate over the dataset sequentially. Read-write transactions can create and
delete buckets and can insert and remove keys. Only one read-write transaction
is allowed at a time.
Caveats
The database uses a read-only, memory-mapped data file to ensure that
applications cannot corrupt the database, however, this means that keys and
values returned from Bolt cannot be changed. Writing to a read-only byte slice
will cause Go to panic.
Keys and values retrieved from the database are only valid for the life of
the transaction. When used outside the transaction, these byte slices can
point to different data or can point to invalid memory which will cause a panic.
*/
package bolt

View File

@ -1,71 +0,0 @@
package bolt
import "errors"
// These errors can be returned when opening or calling methods on a DB.
var (
// ErrDatabaseNotOpen is returned when a DB instance is accessed before it
// is opened or after it is closed.
ErrDatabaseNotOpen = errors.New("database not open")
// ErrDatabaseOpen is returned when opening a database that is
// already open.
ErrDatabaseOpen = errors.New("database already open")
// ErrInvalid is returned when both meta pages on a database are invalid.
// This typically occurs when a file is not a bolt database.
ErrInvalid = errors.New("invalid database")
// ErrVersionMismatch is returned when the data file was created with a
// different version of Bolt.
ErrVersionMismatch = errors.New("version mismatch")
// ErrChecksum is returned when either meta page checksum does not match.
ErrChecksum = errors.New("checksum error")
// ErrTimeout is returned when a database cannot obtain an exclusive lock
// on the data file after the timeout passed to Open().
ErrTimeout = errors.New("timeout")
)
// These errors can occur when beginning or committing a Tx.
var (
// ErrTxNotWritable is returned when performing a write operation on a
// read-only transaction.
ErrTxNotWritable = errors.New("tx not writable")
// ErrTxClosed is returned when committing or rolling back a transaction
// that has already been committed or rolled back.
ErrTxClosed = errors.New("tx closed")
// ErrDatabaseReadOnly is returned when a mutating transaction is started on a
// read-only database.
ErrDatabaseReadOnly = errors.New("database is in read-only mode")
)
// These errors can occur when putting or deleting a value or a bucket.
var (
// ErrBucketNotFound is returned when trying to access a bucket that has
// not been created yet.
ErrBucketNotFound = errors.New("bucket not found")
// ErrBucketExists is returned when creating a bucket that already exists.
ErrBucketExists = errors.New("bucket already exists")
// ErrBucketNameRequired is returned when creating a bucket with a blank name.
ErrBucketNameRequired = errors.New("bucket name required")
// ErrKeyRequired is returned when inserting a zero-length key.
ErrKeyRequired = errors.New("key required")
// ErrKeyTooLarge is returned when inserting a key that is larger than MaxKeySize.
ErrKeyTooLarge = errors.New("key too large")
// ErrValueTooLarge is returned when inserting a value that is larger than MaxValueSize.
ErrValueTooLarge = errors.New("value too large")
// ErrIncompatibleValue is returned when trying create or delete a bucket
// on an existing non-bucket key or when trying to create or delete a
// non-bucket key on an existing bucket key.
ErrIncompatibleValue = errors.New("incompatible value")
)

View File

@ -1,333 +0,0 @@
package bolt
import (
"fmt"
"sort"
"unsafe"
)
// txPending holds a list of pgids and corresponding allocation txns
// that are pending to be freed.
type txPending struct {
ids []pgid
alloctx []txid // txids allocating the ids
lastReleaseBegin txid // beginning txid of last matching releaseRange
}
// freelist represents a list of all pages that are available for allocation.
// It also tracks pages that have been freed but are still in use by open transactions.
type freelist struct {
ids []pgid // all free and available free page ids.
allocs map[pgid]txid // mapping of txid that allocated a pgid.
pending map[txid]*txPending // mapping of soon-to-be free page ids by tx.
cache map[pgid]bool // fast lookup of all free and pending page ids.
}
// newFreelist returns an empty, initialized freelist.
func newFreelist() *freelist {
return &freelist{
allocs: make(map[pgid]txid),
pending: make(map[txid]*txPending),
cache: make(map[pgid]bool),
}
}
// size returns the size of the page after serialization.
func (f *freelist) size() int {
n := f.count()
if n >= 0xFFFF {
// The first element will be used to store the count. See freelist.write.
n++
}
return pageHeaderSize + (int(unsafe.Sizeof(pgid(0))) * n)
}
// count returns count of pages on the freelist
func (f *freelist) count() int {
return f.free_count() + f.pending_count()
}
// free_count returns count of free pages
func (f *freelist) free_count() int {
return len(f.ids)
}
// pending_count returns count of pending pages
func (f *freelist) pending_count() int {
var count int
for _, txp := range f.pending {
count += len(txp.ids)
}
return count
}
// copyall copies into dst a list of all free ids and all pending ids in one sorted list.
// f.count returns the minimum length required for dst.
func (f *freelist) copyall(dst []pgid) {
m := make(pgids, 0, f.pending_count())
for _, txp := range f.pending {
m = append(m, txp.ids...)
}
sort.Sort(m)
mergepgids(dst, f.ids, m)
}
// allocate returns the starting page id of a contiguous list of pages of a given size.
// If a contiguous block cannot be found then 0 is returned.
func (f *freelist) allocate(txid txid, n int) pgid {
if len(f.ids) == 0 {
return 0
}
var initial, previd pgid
for i, id := range f.ids {
if id <= 1 {
panic(fmt.Sprintf("invalid page allocation: %d", id))
}
// Reset initial page if this is not contiguous.
if previd == 0 || id-previd != 1 {
initial = id
}
// If we found a contiguous block then remove it and return it.
if (id-initial)+1 == pgid(n) {
// If we're allocating off the beginning then take the fast path
// and just adjust the existing slice. This will use extra memory
// temporarily but the append() in free() will realloc the slice
// as is necessary.
if (i + 1) == n {
f.ids = f.ids[i+1:]
} else {
copy(f.ids[i-n+1:], f.ids[i+1:])
f.ids = f.ids[:len(f.ids)-n]
}
// Remove from the free cache.
for i := pgid(0); i < pgid(n); i++ {
delete(f.cache, initial+i)
}
f.allocs[initial] = txid
return initial
}
previd = id
}
return 0
}
// free releases a page and its overflow for a given transaction id.
// If the page is already free then a panic will occur.
func (f *freelist) free(txid txid, p *page) {
if p.id <= 1 {
panic(fmt.Sprintf("cannot free page 0 or 1: %d", p.id))
}
// Free page and all its overflow pages.
txp := f.pending[txid]
if txp == nil {
txp = &txPending{}
f.pending[txid] = txp
}
allocTxid, ok := f.allocs[p.id]
if ok {
delete(f.allocs, p.id)
} else if (p.flags & freelistPageFlag) != 0 {
// Freelist is always allocated by prior tx.
allocTxid = txid - 1
}
for id := p.id; id <= p.id+pgid(p.overflow); id++ {
// Verify that page is not already free.
if f.cache[id] {
panic(fmt.Sprintf("page %d already freed", id))
}
// Add to the freelist and cache.
txp.ids = append(txp.ids, id)
txp.alloctx = append(txp.alloctx, allocTxid)
f.cache[id] = true
}
}
// release moves all page ids for a transaction id (or older) to the freelist.
func (f *freelist) release(txid txid) {
m := make(pgids, 0)
for tid, txp := range f.pending {
if tid <= txid {
// Move transaction's pending pages to the available freelist.
// Don't remove from the cache since the page is still free.
m = append(m, txp.ids...)
delete(f.pending, tid)
}
}
sort.Sort(m)
f.ids = pgids(f.ids).merge(m)
}
// releaseRange moves pending pages allocated within an extent [begin,end] to the free list.
func (f *freelist) releaseRange(begin, end txid) {
if begin > end {
return
}
var m pgids
for tid, txp := range f.pending {
if tid < begin || tid > end {
continue
}
// Don't recompute freed pages if ranges haven't updated.
if txp.lastReleaseBegin == begin {
continue
}
for i := 0; i < len(txp.ids); i++ {
if atx := txp.alloctx[i]; atx < begin || atx > end {
continue
}
m = append(m, txp.ids[i])
txp.ids[i] = txp.ids[len(txp.ids)-1]
txp.ids = txp.ids[:len(txp.ids)-1]
txp.alloctx[i] = txp.alloctx[len(txp.alloctx)-1]
txp.alloctx = txp.alloctx[:len(txp.alloctx)-1]
i--
}
txp.lastReleaseBegin = begin
if len(txp.ids) == 0 {
delete(f.pending, tid)
}
}
sort.Sort(m)
f.ids = pgids(f.ids).merge(m)
}
// rollback removes the pages from a given pending tx.
func (f *freelist) rollback(txid txid) {
// Remove page ids from cache.
txp := f.pending[txid]
if txp == nil {
return
}
var m pgids
for i, pgid := range txp.ids {
delete(f.cache, pgid)
tx := txp.alloctx[i]
if tx == 0 {
continue
}
if tx != txid {
// Pending free aborted; restore page back to alloc list.
f.allocs[pgid] = tx
} else {
// Freed page was allocated by this txn; OK to throw away.
m = append(m, pgid)
}
}
// Remove pages from pending list and mark as free if allocated by txid.
delete(f.pending, txid)
sort.Sort(m)
f.ids = pgids(f.ids).merge(m)
}
// freed returns whether a given page is in the free list.
func (f *freelist) freed(pgid pgid) bool {
return f.cache[pgid]
}
// read initializes the freelist from a freelist page.
func (f *freelist) read(p *page) {
if (p.flags & freelistPageFlag) == 0 {
panic(fmt.Sprintf("invalid freelist page: %d, page type is %s", p.id, p.typ()))
}
// If the page.count is at the max uint16 value (64k) then it's considered
// an overflow and the size of the freelist is stored as the first element.
idx, count := 0, int(p.count)
if count == 0xFFFF {
idx = 1
count = int(((*[maxAllocSize]pgid)(unsafe.Pointer(&p.ptr)))[0])
}
// Copy the list of page ids from the freelist.
if count == 0 {
f.ids = nil
} else {
ids := ((*[maxAllocSize]pgid)(unsafe.Pointer(&p.ptr)))[idx : idx+count]
f.ids = make([]pgid, len(ids))
copy(f.ids, ids)
// Make sure they're sorted.
sort.Sort(pgids(f.ids))
}
// Rebuild the page cache.
f.reindex()
}
// read initializes the freelist from a given list of ids.
func (f *freelist) readIDs(ids []pgid) {
f.ids = ids
f.reindex()
}
// write writes the page ids onto a freelist page. All free and pending ids are
// saved to disk since in the event of a program crash, all pending ids will
// become free.
func (f *freelist) write(p *page) error {
// Combine the old free pgids and pgids waiting on an open transaction.
// Update the header flag.
p.flags |= freelistPageFlag
// The page.count can only hold up to 64k elements so if we overflow that
// number then we handle it by putting the size in the first element.
lenids := f.count()
if lenids == 0 {
p.count = uint16(lenids)
} else if lenids < 0xFFFF {
p.count = uint16(lenids)
f.copyall(((*[maxAllocSize]pgid)(unsafe.Pointer(&p.ptr)))[:])
} else {
p.count = 0xFFFF
((*[maxAllocSize]pgid)(unsafe.Pointer(&p.ptr)))[0] = pgid(lenids)
f.copyall(((*[maxAllocSize]pgid)(unsafe.Pointer(&p.ptr)))[1:])
}
return nil
}
// reload reads the freelist from a page and filters out pending items.
func (f *freelist) reload(p *page) {
f.read(p)
// Build a cache of only pending pages.
pcache := make(map[pgid]bool)
for _, txp := range f.pending {
for _, pendingID := range txp.ids {
pcache[pendingID] = true
}
}
// Check each page in the freelist and build a new available freelist
// with any pages not in the pending lists.
var a []pgid
for _, id := range f.ids {
if !pcache[id] {
a = append(a, id)
}
}
f.ids = a
// Once the available list is rebuilt then rebuild the free cache so that
// it includes the available and pending free pages.
f.reindex()
}
// reindex rebuilds the free cache based on available and pending free lists.
func (f *freelist) reindex() {
f.cache = make(map[pgid]bool, len(f.ids))
for _, id := range f.ids {
f.cache[id] = true
}
for _, txp := range f.pending {
for _, pendingID := range txp.ids {
f.cache[pendingID] = true
}
}
}

View File

@ -1,288 +0,0 @@
package bolt
import (
"math/rand"
"reflect"
"sort"
"testing"
"unsafe"
)
// Ensure that a page is added to a transaction's freelist.
func TestFreelist_free(t *testing.T) {
f := newFreelist()
f.free(100, &page{id: 12})
if !reflect.DeepEqual([]pgid{12}, f.pending[100].ids) {
t.Fatalf("exp=%v; got=%v", []pgid{12}, f.pending[100])
}
}
// Ensure that a page and its overflow is added to a transaction's freelist.
func TestFreelist_free_overflow(t *testing.T) {
f := newFreelist()
f.free(100, &page{id: 12, overflow: 3})
if exp := []pgid{12, 13, 14, 15}; !reflect.DeepEqual(exp, f.pending[100].ids) {
t.Fatalf("exp=%v; got=%v", exp, f.pending[100])
}
}
// Ensure that a transaction's free pages can be released.
func TestFreelist_release(t *testing.T) {
f := newFreelist()
f.free(100, &page{id: 12, overflow: 1})
f.free(100, &page{id: 9})
f.free(102, &page{id: 39})
f.release(100)
f.release(101)
if exp := []pgid{9, 12, 13}; !reflect.DeepEqual(exp, f.ids) {
t.Fatalf("exp=%v; got=%v", exp, f.ids)
}
f.release(102)
if exp := []pgid{9, 12, 13, 39}; !reflect.DeepEqual(exp, f.ids) {
t.Fatalf("exp=%v; got=%v", exp, f.ids)
}
}
// Ensure that releaseRange handles boundary conditions correctly
func TestFreelist_releaseRange(t *testing.T) {
type testRange struct {
begin, end txid
}
type testPage struct {
id pgid
n int
allocTxn txid
freeTxn txid
}
var releaseRangeTests = []struct {
title string
pagesIn []testPage
releaseRanges []testRange
wantFree []pgid
}{
{
title: "Single pending in range",
pagesIn: []testPage{{id: 3, n: 1, allocTxn: 100, freeTxn: 200}},
releaseRanges: []testRange{{1, 300}},
wantFree: []pgid{3},
},
{
title: "Single pending with minimum end range",
pagesIn: []testPage{{id: 3, n: 1, allocTxn: 100, freeTxn: 200}},
releaseRanges: []testRange{{1, 200}},
wantFree: []pgid{3},
},
{
title: "Single pending outsize minimum end range",
pagesIn: []testPage{{id: 3, n: 1, allocTxn: 100, freeTxn: 200}},
releaseRanges: []testRange{{1, 199}},
wantFree: nil,
},
{
title: "Single pending with minimum begin range",
pagesIn: []testPage{{id: 3, n: 1, allocTxn: 100, freeTxn: 200}},
releaseRanges: []testRange{{100, 300}},
wantFree: []pgid{3},
},
{
title: "Single pending outside minimum begin range",
pagesIn: []testPage{{id: 3, n: 1, allocTxn: 100, freeTxn: 200}},
releaseRanges: []testRange{{101, 300}},
wantFree: nil,
},
{
title: "Single pending in minimum range",
pagesIn: []testPage{{id: 3, n: 1, allocTxn: 199, freeTxn: 200}},
releaseRanges: []testRange{{199, 200}},
wantFree: []pgid{3},
},
{
title: "Single pending and read transaction at 199",
pagesIn: []testPage{{id: 3, n: 1, allocTxn: 199, freeTxn: 200}},
releaseRanges: []testRange{{100, 198}, {200, 300}},
wantFree: nil,
},
{
title: "Adjacent pending and read transactions at 199, 200",
pagesIn: []testPage{
{id: 3, n: 1, allocTxn: 199, freeTxn: 200},
{id: 4, n: 1, allocTxn: 200, freeTxn: 201},
},
releaseRanges: []testRange{
{100, 198},
{200, 199}, // Simulate the ranges db.freePages might produce.
{201, 300},
},
wantFree: nil,
},
{
title: "Out of order ranges",
pagesIn: []testPage{
{id: 3, n: 1, allocTxn: 199, freeTxn: 200},
{id: 4, n: 1, allocTxn: 200, freeTxn: 201},
},
releaseRanges: []testRange{
{201, 199},
{201, 200},
{200, 200},
},
wantFree: nil,
},
{
title: "Multiple pending, read transaction at 150",
pagesIn: []testPage{
{id: 3, n: 1, allocTxn: 100, freeTxn: 200},
{id: 4, n: 1, allocTxn: 100, freeTxn: 125},
{id: 5, n: 1, allocTxn: 125, freeTxn: 150},
{id: 6, n: 1, allocTxn: 125, freeTxn: 175},
{id: 7, n: 2, allocTxn: 150, freeTxn: 175},
{id: 9, n: 2, allocTxn: 175, freeTxn: 200},
},
releaseRanges: []testRange{{50, 149}, {151, 300}},
wantFree: []pgid{4, 9},
},
}
for _, c := range releaseRangeTests {
f := newFreelist()
for _, p := range c.pagesIn {
for i := uint64(0); i < uint64(p.n); i++ {
f.ids = append(f.ids, pgid(uint64(p.id)+i))
}
}
for _, p := range c.pagesIn {
f.allocate(p.allocTxn, p.n)
}
for _, p := range c.pagesIn {
f.free(p.freeTxn, &page{id: p.id})
}
for _, r := range c.releaseRanges {
f.releaseRange(r.begin, r.end)
}
if exp := c.wantFree; !reflect.DeepEqual(exp, f.ids) {
t.Errorf("exp=%v; got=%v for %s", exp, f.ids, c.title)
}
}
}
// Ensure that a freelist can find contiguous blocks of pages.
func TestFreelist_allocate(t *testing.T) {
f := newFreelist()
f.ids = []pgid{3, 4, 5, 6, 7, 9, 12, 13, 18}
if id := int(f.allocate(1, 3)); id != 3 {
t.Fatalf("exp=3; got=%v", id)
}
if id := int(f.allocate(1, 1)); id != 6 {
t.Fatalf("exp=6; got=%v", id)
}
if id := int(f.allocate(1, 3)); id != 0 {
t.Fatalf("exp=0; got=%v", id)
}
if id := int(f.allocate(1, 2)); id != 12 {
t.Fatalf("exp=12; got=%v", id)
}
if id := int(f.allocate(1, 1)); id != 7 {
t.Fatalf("exp=7; got=%v", id)
}
if id := int(f.allocate(1, 0)); id != 0 {
t.Fatalf("exp=0; got=%v", id)
}
if id := int(f.allocate(1, 0)); id != 0 {
t.Fatalf("exp=0; got=%v", id)
}
if exp := []pgid{9, 18}; !reflect.DeepEqual(exp, f.ids) {
t.Fatalf("exp=%v; got=%v", exp, f.ids)
}
if id := int(f.allocate(1, 1)); id != 9 {
t.Fatalf("exp=9; got=%v", id)
}
if id := int(f.allocate(1, 1)); id != 18 {
t.Fatalf("exp=18; got=%v", id)
}
if id := int(f.allocate(1, 1)); id != 0 {
t.Fatalf("exp=0; got=%v", id)
}
if exp := []pgid{}; !reflect.DeepEqual(exp, f.ids) {
t.Fatalf("exp=%v; got=%v", exp, f.ids)
}
}
// Ensure that a freelist can deserialize from a freelist page.
func TestFreelist_read(t *testing.T) {
// Create a page.
var buf [4096]byte
page := (*page)(unsafe.Pointer(&buf[0]))
page.flags = freelistPageFlag
page.count = 2
// Insert 2 page ids.
ids := (*[3]pgid)(unsafe.Pointer(&page.ptr))
ids[0] = 23
ids[1] = 50
// Deserialize page into a freelist.
f := newFreelist()
f.read(page)
// Ensure that there are two page ids in the freelist.
if exp := []pgid{23, 50}; !reflect.DeepEqual(exp, f.ids) {
t.Fatalf("exp=%v; got=%v", exp, f.ids)
}
}
// Ensure that a freelist can serialize into a freelist page.
func TestFreelist_write(t *testing.T) {
// Create a freelist and write it to a page.
var buf [4096]byte
f := &freelist{ids: []pgid{12, 39}, pending: make(map[txid]*txPending)}
f.pending[100] = &txPending{ids: []pgid{28, 11}}
f.pending[101] = &txPending{ids: []pgid{3}}
p := (*page)(unsafe.Pointer(&buf[0]))
if err := f.write(p); err != nil {
t.Fatal(err)
}
// Read the page back out.
f2 := newFreelist()
f2.read(p)
// Ensure that the freelist is correct.
// All pages should be present and in reverse order.
if exp := []pgid{3, 11, 12, 28, 39}; !reflect.DeepEqual(exp, f2.ids) {
t.Fatalf("exp=%v; got=%v", exp, f2.ids)
}
}
func Benchmark_FreelistRelease10K(b *testing.B) { benchmark_FreelistRelease(b, 10000) }
func Benchmark_FreelistRelease100K(b *testing.B) { benchmark_FreelistRelease(b, 100000) }
func Benchmark_FreelistRelease1000K(b *testing.B) { benchmark_FreelistRelease(b, 1000000) }
func Benchmark_FreelistRelease10000K(b *testing.B) { benchmark_FreelistRelease(b, 10000000) }
func benchmark_FreelistRelease(b *testing.B, size int) {
ids := randomPgids(size)
pending := randomPgids(len(ids) / 400)
b.ResetTimer()
for i := 0; i < b.N; i++ {
txp := &txPending{ids: pending}
f := &freelist{ids: ids, pending: map[txid]*txPending{1: txp}}
f.release(1)
}
}
func randomPgids(n int) []pgid {
rand.Seed(42)
pgids := make(pgids, n)
for i := range pgids {
pgids[i] = pgid(rand.Int63())
}
sort.Sort(pgids)
return pgids
}

View File

@ -1,604 +0,0 @@
package bolt
import (
"bytes"
"fmt"
"sort"
"unsafe"
)
// node represents an in-memory, deserialized page.
type node struct {
bucket *Bucket
isLeaf bool
unbalanced bool
spilled bool
key []byte
pgid pgid
parent *node
children nodes
inodes inodes
}
// root returns the top-level node this node is attached to.
func (n *node) root() *node {
if n.parent == nil {
return n
}
return n.parent.root()
}
// minKeys returns the minimum number of inodes this node should have.
func (n *node) minKeys() int {
if n.isLeaf {
return 1
}
return 2
}
// size returns the size of the node after serialization.
func (n *node) size() int {
sz, elsz := pageHeaderSize, n.pageElementSize()
for i := 0; i < len(n.inodes); i++ {
item := &n.inodes[i]
sz += elsz + len(item.key) + len(item.value)
}
return sz
}
// sizeLessThan returns true if the node is less than a given size.
// This is an optimization to avoid calculating a large node when we only need
// to know if it fits inside a certain page size.
func (n *node) sizeLessThan(v int) bool {
sz, elsz := pageHeaderSize, n.pageElementSize()
for i := 0; i < len(n.inodes); i++ {
item := &n.inodes[i]
sz += elsz + len(item.key) + len(item.value)
if sz >= v {
return false
}
}
return true
}
// pageElementSize returns the size of each page element based on the type of node.
func (n *node) pageElementSize() int {
if n.isLeaf {
return leafPageElementSize
}
return branchPageElementSize
}
// childAt returns the child node at a given index.
func (n *node) childAt(index int) *node {
if n.isLeaf {
panic(fmt.Sprintf("invalid childAt(%d) on a leaf node", index))
}
return n.bucket.node(n.inodes[index].pgid, n)
}
// childIndex returns the index of a given child node.
func (n *node) childIndex(child *node) int {
index := sort.Search(len(n.inodes), func(i int) bool { return bytes.Compare(n.inodes[i].key, child.key) != -1 })
return index
}
// numChildren returns the number of children.
func (n *node) numChildren() int {
return len(n.inodes)
}
// nextSibling returns the next node with the same parent.
func (n *node) nextSibling() *node {
if n.parent == nil {
return nil
}
index := n.parent.childIndex(n)
if index >= n.parent.numChildren()-1 {
return nil
}
return n.parent.childAt(index + 1)
}
// prevSibling returns the previous node with the same parent.
func (n *node) prevSibling() *node {
if n.parent == nil {
return nil
}
index := n.parent.childIndex(n)
if index == 0 {
return nil
}
return n.parent.childAt(index - 1)
}
// put inserts a key/value.
func (n *node) put(oldKey, newKey, value []byte, pgid pgid, flags uint32) {
if pgid >= n.bucket.tx.meta.pgid {
panic(fmt.Sprintf("pgid (%d) above high water mark (%d)", pgid, n.bucket.tx.meta.pgid))
} else if len(oldKey) <= 0 {
panic("put: zero-length old key")
} else if len(newKey) <= 0 {
panic("put: zero-length new key")
}
// Find insertion index.
index := sort.Search(len(n.inodes), func(i int) bool { return bytes.Compare(n.inodes[i].key, oldKey) != -1 })
// Add capacity and shift nodes if we don't have an exact match and need to insert.
exact := (len(n.inodes) > 0 && index < len(n.inodes) && bytes.Equal(n.inodes[index].key, oldKey))
if !exact {
n.inodes = append(n.inodes, inode{})
copy(n.inodes[index+1:], n.inodes[index:])
}
inode := &n.inodes[index]
inode.flags = flags
inode.key = newKey
inode.value = value
inode.pgid = pgid
_assert(len(inode.key) > 0, "put: zero-length inode key")
}
// del removes a key from the node.
func (n *node) del(key []byte) {
// Find index of key.
index := sort.Search(len(n.inodes), func(i int) bool { return bytes.Compare(n.inodes[i].key, key) != -1 })
// Exit if the key isn't found.
if index >= len(n.inodes) || !bytes.Equal(n.inodes[index].key, key) {
return
}
// Delete inode from the node.
n.inodes = append(n.inodes[:index], n.inodes[index+1:]...)
// Mark the node as needing rebalancing.
n.unbalanced = true
}
// read initializes the node from a page.
func (n *node) read(p *page) {
n.pgid = p.id
n.isLeaf = ((p.flags & leafPageFlag) != 0)
n.inodes = make(inodes, int(p.count))
for i := 0; i < int(p.count); i++ {
inode := &n.inodes[i]
if n.isLeaf {
elem := p.leafPageElement(uint16(i))
inode.flags = elem.flags
inode.key = elem.key()
inode.value = elem.value()
} else {
elem := p.branchPageElement(uint16(i))
inode.pgid = elem.pgid
inode.key = elem.key()
}
_assert(len(inode.key) > 0, "read: zero-length inode key")
}
// Save first key so we can find the node in the parent when we spill.
if len(n.inodes) > 0 {
n.key = n.inodes[0].key
_assert(len(n.key) > 0, "read: zero-length node key")
} else {
n.key = nil
}
}
// write writes the items onto one or more pages.
func (n *node) write(p *page) {
// Initialize page.
if n.isLeaf {
p.flags |= leafPageFlag
} else {
p.flags |= branchPageFlag
}
if len(n.inodes) >= 0xFFFF {
panic(fmt.Sprintf("inode overflow: %d (pgid=%d)", len(n.inodes), p.id))
}
p.count = uint16(len(n.inodes))
// Stop here if there are no items to write.
if p.count == 0 {
return
}
// Loop over each item and write it to the page.
b := (*[maxAllocSize]byte)(unsafe.Pointer(&p.ptr))[n.pageElementSize()*len(n.inodes):]
for i, item := range n.inodes {
_assert(len(item.key) > 0, "write: zero-length inode key")
// Write the page element.
if n.isLeaf {
elem := p.leafPageElement(uint16(i))
elem.pos = uint32(uintptr(unsafe.Pointer(&b[0])) - uintptr(unsafe.Pointer(elem)))
elem.flags = item.flags
elem.ksize = uint32(len(item.key))
elem.vsize = uint32(len(item.value))
} else {
elem := p.branchPageElement(uint16(i))
elem.pos = uint32(uintptr(unsafe.Pointer(&b[0])) - uintptr(unsafe.Pointer(elem)))
elem.ksize = uint32(len(item.key))
elem.pgid = item.pgid
_assert(elem.pgid != p.id, "write: circular dependency occurred")
}
// If the length of key+value is larger than the max allocation size
// then we need to reallocate the byte array pointer.
//
// See: https://github.com/boltdb/bolt/pull/335
klen, vlen := len(item.key), len(item.value)
if len(b) < klen+vlen {
b = (*[maxAllocSize]byte)(unsafe.Pointer(&b[0]))[:]
}
// Write data for the element to the end of the page.
copy(b[0:], item.key)
b = b[klen:]
copy(b[0:], item.value)
b = b[vlen:]
}
// DEBUG ONLY: n.dump()
}
// split breaks up a node into multiple smaller nodes, if appropriate.
// This should only be called from the spill() function.
func (n *node) split(pageSize int) []*node {
var nodes []*node
node := n
for {
// Split node into two.
a, b := node.splitTwo(pageSize)
nodes = append(nodes, a)
// If we can't split then exit the loop.
if b == nil {
break
}
// Set node to b so it gets split on the next iteration.
node = b
}
return nodes
}
// splitTwo breaks up a node into two smaller nodes, if appropriate.
// This should only be called from the split() function.
func (n *node) splitTwo(pageSize int) (*node, *node) {
// Ignore the split if the page doesn't have at least enough nodes for
// two pages or if the nodes can fit in a single page.
if len(n.inodes) <= (minKeysPerPage*2) || n.sizeLessThan(pageSize) {
return n, nil
}
// Determine the threshold before starting a new node.
var fillPercent = n.bucket.FillPercent
if fillPercent < minFillPercent {
fillPercent = minFillPercent
} else if fillPercent > maxFillPercent {
fillPercent = maxFillPercent
}
threshold := int(float64(pageSize) * fillPercent)
// Determine split position and sizes of the two pages.
splitIndex, _ := n.splitIndex(threshold)
// Split node into two separate nodes.
// If there's no parent then we'll need to create one.
if n.parent == nil {
n.parent = &node{bucket: n.bucket, children: []*node{n}}
}
// Create a new node and add it to the parent.
next := &node{bucket: n.bucket, isLeaf: n.isLeaf, parent: n.parent}
n.parent.children = append(n.parent.children, next)
// Split inodes across two nodes.
next.inodes = n.inodes[splitIndex:]
n.inodes = n.inodes[:splitIndex]
// Update the statistics.
n.bucket.tx.stats.Split++
return n, next
}
// splitIndex finds the position where a page will fill a given threshold.
// It returns the index as well as the size of the first page.
// This is only be called from split().
func (n *node) splitIndex(threshold int) (index, sz int) {
sz = pageHeaderSize
// Loop until we only have the minimum number of keys required for the second page.
for i := 0; i < len(n.inodes)-minKeysPerPage; i++ {
index = i
inode := n.inodes[i]
elsize := n.pageElementSize() + len(inode.key) + len(inode.value)
// If we have at least the minimum number of keys and adding another
// node would put us over the threshold then exit and return.
if i >= minKeysPerPage && sz+elsize > threshold {
break
}
// Add the element size to the total size.
sz += elsize
}
return
}
// spill writes the nodes to dirty pages and splits nodes as it goes.
// Returns an error if dirty pages cannot be allocated.
func (n *node) spill() error {
var tx = n.bucket.tx
if n.spilled {
return nil
}
// Spill child nodes first. Child nodes can materialize sibling nodes in
// the case of split-merge so we cannot use a range loop. We have to check
// the children size on every loop iteration.
sort.Sort(n.children)
for i := 0; i < len(n.children); i++ {
if err := n.children[i].spill(); err != nil {
return err
}
}
// We no longer need the child list because it's only used for spill tracking.
n.children = nil
// Split nodes into appropriate sizes. The first node will always be n.
var nodes = n.split(tx.db.pageSize)
for _, node := range nodes {
// Add node's page to the freelist if it's not new.
if node.pgid > 0 {
tx.db.freelist.free(tx.meta.txid, tx.page(node.pgid))
node.pgid = 0
}
// Allocate contiguous space for the node.
p, err := tx.allocate((node.size() + tx.db.pageSize - 1) / tx.db.pageSize)
if err != nil {
return err
}
// Write the node.
if p.id >= tx.meta.pgid {
panic(fmt.Sprintf("pgid (%d) above high water mark (%d)", p.id, tx.meta.pgid))
}
node.pgid = p.id
node.write(p)
node.spilled = true
// Insert into parent inodes.
if node.parent != nil {
var key = node.key
if key == nil {
key = node.inodes[0].key
}
node.parent.put(key, node.inodes[0].key, nil, node.pgid, 0)
node.key = node.inodes[0].key
_assert(len(node.key) > 0, "spill: zero-length node key")
}
// Update the statistics.
tx.stats.Spill++
}
// If the root node split and created a new root then we need to spill that
// as well. We'll clear out the children to make sure it doesn't try to respill.
if n.parent != nil && n.parent.pgid == 0 {
n.children = nil
return n.parent.spill()
}
return nil
}
// rebalance attempts to combine the node with sibling nodes if the node fill
// size is below a threshold or if there are not enough keys.
func (n *node) rebalance() {
if !n.unbalanced {
return
}
n.unbalanced = false
// Update statistics.
n.bucket.tx.stats.Rebalance++
// Ignore if node is above threshold (25%) and has enough keys.
var threshold = n.bucket.tx.db.pageSize / 4
if n.size() > threshold && len(n.inodes) > n.minKeys() {
return
}
// Root node has special handling.
if n.parent == nil {
// If root node is a branch and only has one node then collapse it.
if !n.isLeaf && len(n.inodes) == 1 {
// Move root's child up.
child := n.bucket.node(n.inodes[0].pgid, n)
n.isLeaf = child.isLeaf
n.inodes = child.inodes[:]
n.children = child.children
// Reparent all child nodes being moved.
for _, inode := range n.inodes {
if child, ok := n.bucket.nodes[inode.pgid]; ok {
child.parent = n
}
}
// Remove old child.
child.parent = nil
delete(n.bucket.nodes, child.pgid)
child.free()
}
return
}
// If node has no keys then just remove it.
if n.numChildren() == 0 {
n.parent.del(n.key)
n.parent.removeChild(n)
delete(n.bucket.nodes, n.pgid)
n.free()
n.parent.rebalance()
return
}
_assert(n.parent.numChildren() > 1, "parent must have at least 2 children")
// Destination node is right sibling if idx == 0, otherwise left sibling.
var target *node
var useNextSibling = (n.parent.childIndex(n) == 0)
if useNextSibling {
target = n.nextSibling()
} else {
target = n.prevSibling()
}
// If both this node and the target node are too small then merge them.
if useNextSibling {
// Reparent all child nodes being moved.
for _, inode := range target.inodes {
if child, ok := n.bucket.nodes[inode.pgid]; ok {
child.parent.removeChild(child)
child.parent = n
child.parent.children = append(child.parent.children, child)
}
}
// Copy over inodes from target and remove target.
n.inodes = append(n.inodes, target.inodes...)
n.parent.del(target.key)
n.parent.removeChild(target)
delete(n.bucket.nodes, target.pgid)
target.free()
} else {
// Reparent all child nodes being moved.
for _, inode := range n.inodes {
if child, ok := n.bucket.nodes[inode.pgid]; ok {
child.parent.removeChild(child)
child.parent = target
child.parent.children = append(child.parent.children, child)
}
}
// Copy over inodes to target and remove node.
target.inodes = append(target.inodes, n.inodes...)
n.parent.del(n.key)
n.parent.removeChild(n)
delete(n.bucket.nodes, n.pgid)
n.free()
}
// Either this node or the target node was deleted from the parent so rebalance it.
n.parent.rebalance()
}
// removes a node from the list of in-memory children.
// This does not affect the inodes.
func (n *node) removeChild(target *node) {
for i, child := range n.children {
if child == target {
n.children = append(n.children[:i], n.children[i+1:]...)
return
}
}
}
// dereference causes the node to copy all its inode key/value references to heap memory.
// This is required when the mmap is reallocated so inodes are not pointing to stale data.
func (n *node) dereference() {
if n.key != nil {
key := make([]byte, len(n.key))
copy(key, n.key)
n.key = key
_assert(n.pgid == 0 || len(n.key) > 0, "dereference: zero-length node key on existing node")
}
for i := range n.inodes {
inode := &n.inodes[i]
key := make([]byte, len(inode.key))
copy(key, inode.key)
inode.key = key
_assert(len(inode.key) > 0, "dereference: zero-length inode key")
value := make([]byte, len(inode.value))
copy(value, inode.value)
inode.value = value
}
// Recursively dereference children.
for _, child := range n.children {
child.dereference()
}
// Update statistics.
n.bucket.tx.stats.NodeDeref++
}
// free adds the node's underlying page to the freelist.
func (n *node) free() {
if n.pgid != 0 {
n.bucket.tx.db.freelist.free(n.bucket.tx.meta.txid, n.bucket.tx.page(n.pgid))
n.pgid = 0
}
}
// dump writes the contents of the node to STDERR for debugging purposes.
/*
func (n *node) dump() {
// Write node header.
var typ = "branch"
if n.isLeaf {
typ = "leaf"
}
warnf("[NODE %d {type=%s count=%d}]", n.pgid, typ, len(n.inodes))
// Write out abbreviated version of each item.
for _, item := range n.inodes {
if n.isLeaf {
if item.flags&bucketLeafFlag != 0 {
bucket := (*bucket)(unsafe.Pointer(&item.value[0]))
warnf("+L %08x -> (bucket root=%d)", trunc(item.key, 4), bucket.root)
} else {
warnf("+L %08x -> %08x", trunc(item.key, 4), trunc(item.value, 4))
}
} else {
warnf("+B %08x -> pgid=%d", trunc(item.key, 4), item.pgid)
}
}
warn("")
}
*/
type nodes []*node
func (s nodes) Len() int { return len(s) }
func (s nodes) Swap(i, j int) { s[i], s[j] = s[j], s[i] }
func (s nodes) Less(i, j int) bool { return bytes.Compare(s[i].inodes[0].key, s[j].inodes[0].key) == -1 }
// inode represents an internal node inside of a node.
// It can be used to point to elements in a page or point
// to an element which hasn't been added to a page yet.
type inode struct {
flags uint32
pgid pgid
key []byte
value []byte
}
type inodes []inode

View File

@ -1,156 +0,0 @@
package bolt
import (
"testing"
"unsafe"
)
// Ensure that a node can insert a key/value.
func TestNode_put(t *testing.T) {
n := &node{inodes: make(inodes, 0), bucket: &Bucket{tx: &Tx{meta: &meta{pgid: 1}}}}
n.put([]byte("baz"), []byte("baz"), []byte("2"), 0, 0)
n.put([]byte("foo"), []byte("foo"), []byte("0"), 0, 0)
n.put([]byte("bar"), []byte("bar"), []byte("1"), 0, 0)
n.put([]byte("foo"), []byte("foo"), []byte("3"), 0, leafPageFlag)
if len(n.inodes) != 3 {
t.Fatalf("exp=3; got=%d", len(n.inodes))
}
if k, v := n.inodes[0].key, n.inodes[0].value; string(k) != "bar" || string(v) != "1" {
t.Fatalf("exp=<bar,1>; got=<%s,%s>", k, v)
}
if k, v := n.inodes[1].key, n.inodes[1].value; string(k) != "baz" || string(v) != "2" {
t.Fatalf("exp=<baz,2>; got=<%s,%s>", k, v)
}
if k, v := n.inodes[2].key, n.inodes[2].value; string(k) != "foo" || string(v) != "3" {
t.Fatalf("exp=<foo,3>; got=<%s,%s>", k, v)
}
if n.inodes[2].flags != uint32(leafPageFlag) {
t.Fatalf("not a leaf: %d", n.inodes[2].flags)
}
}
// Ensure that a node can deserialize from a leaf page.
func TestNode_read_LeafPage(t *testing.T) {
// Create a page.
var buf [4096]byte
page := (*page)(unsafe.Pointer(&buf[0]))
page.flags = leafPageFlag
page.count = 2
// Insert 2 elements at the beginning. sizeof(leafPageElement) == 16
nodes := (*[3]leafPageElement)(unsafe.Pointer(&page.ptr))
nodes[0] = leafPageElement{flags: 0, pos: 32, ksize: 3, vsize: 4} // pos = sizeof(leafPageElement) * 2
nodes[1] = leafPageElement{flags: 0, pos: 23, ksize: 10, vsize: 3} // pos = sizeof(leafPageElement) + 3 + 4
// Write data for the nodes at the end.
data := (*[4096]byte)(unsafe.Pointer(&nodes[2]))
copy(data[:], []byte("barfooz"))
copy(data[7:], []byte("helloworldbye"))
// Deserialize page into a leaf.
n := &node{}
n.read(page)
// Check that there are two inodes with correct data.
if !n.isLeaf {
t.Fatal("expected leaf")
}
if len(n.inodes) != 2 {
t.Fatalf("exp=2; got=%d", len(n.inodes))
}
if k, v := n.inodes[0].key, n.inodes[0].value; string(k) != "bar" || string(v) != "fooz" {
t.Fatalf("exp=<bar,fooz>; got=<%s,%s>", k, v)
}
if k, v := n.inodes[1].key, n.inodes[1].value; string(k) != "helloworld" || string(v) != "bye" {
t.Fatalf("exp=<helloworld,bye>; got=<%s,%s>", k, v)
}
}
// Ensure that a node can serialize into a leaf page.
func TestNode_write_LeafPage(t *testing.T) {
// Create a node.
n := &node{isLeaf: true, inodes: make(inodes, 0), bucket: &Bucket{tx: &Tx{db: &DB{}, meta: &meta{pgid: 1}}}}
n.put([]byte("susy"), []byte("susy"), []byte("que"), 0, 0)
n.put([]byte("ricki"), []byte("ricki"), []byte("lake"), 0, 0)
n.put([]byte("john"), []byte("john"), []byte("johnson"), 0, 0)
// Write it to a page.
var buf [4096]byte
p := (*page)(unsafe.Pointer(&buf[0]))
n.write(p)
// Read the page back in.
n2 := &node{}
n2.read(p)
// Check that the two pages are the same.
if len(n2.inodes) != 3 {
t.Fatalf("exp=3; got=%d", len(n2.inodes))
}
if k, v := n2.inodes[0].key, n2.inodes[0].value; string(k) != "john" || string(v) != "johnson" {
t.Fatalf("exp=<john,johnson>; got=<%s,%s>", k, v)
}
if k, v := n2.inodes[1].key, n2.inodes[1].value; string(k) != "ricki" || string(v) != "lake" {
t.Fatalf("exp=<ricki,lake>; got=<%s,%s>", k, v)
}
if k, v := n2.inodes[2].key, n2.inodes[2].value; string(k) != "susy" || string(v) != "que" {
t.Fatalf("exp=<susy,que>; got=<%s,%s>", k, v)
}
}
// Ensure that a node can split into appropriate subgroups.
func TestNode_split(t *testing.T) {
// Create a node.
n := &node{inodes: make(inodes, 0), bucket: &Bucket{tx: &Tx{db: &DB{}, meta: &meta{pgid: 1}}}}
n.put([]byte("00000001"), []byte("00000001"), []byte("0123456701234567"), 0, 0)
n.put([]byte("00000002"), []byte("00000002"), []byte("0123456701234567"), 0, 0)
n.put([]byte("00000003"), []byte("00000003"), []byte("0123456701234567"), 0, 0)
n.put([]byte("00000004"), []byte("00000004"), []byte("0123456701234567"), 0, 0)
n.put([]byte("00000005"), []byte("00000005"), []byte("0123456701234567"), 0, 0)
// Split between 2 & 3.
n.split(100)
var parent = n.parent
if len(parent.children) != 2 {
t.Fatalf("exp=2; got=%d", len(parent.children))
}
if len(parent.children[0].inodes) != 2 {
t.Fatalf("exp=2; got=%d", len(parent.children[0].inodes))
}
if len(parent.children[1].inodes) != 3 {
t.Fatalf("exp=3; got=%d", len(parent.children[1].inodes))
}
}
// Ensure that a page with the minimum number of inodes just returns a single node.
func TestNode_split_MinKeys(t *testing.T) {
// Create a node.
n := &node{inodes: make(inodes, 0), bucket: &Bucket{tx: &Tx{db: &DB{}, meta: &meta{pgid: 1}}}}
n.put([]byte("00000001"), []byte("00000001"), []byte("0123456701234567"), 0, 0)
n.put([]byte("00000002"), []byte("00000002"), []byte("0123456701234567"), 0, 0)
// Split.
n.split(20)
if n.parent != nil {
t.Fatalf("expected nil parent")
}
}
// Ensure that a node that has keys that all fit on a page just returns one leaf.
func TestNode_split_SinglePage(t *testing.T) {
// Create a node.
n := &node{inodes: make(inodes, 0), bucket: &Bucket{tx: &Tx{db: &DB{}, meta: &meta{pgid: 1}}}}
n.put([]byte("00000001"), []byte("00000001"), []byte("0123456701234567"), 0, 0)
n.put([]byte("00000002"), []byte("00000002"), []byte("0123456701234567"), 0, 0)
n.put([]byte("00000003"), []byte("00000003"), []byte("0123456701234567"), 0, 0)
n.put([]byte("00000004"), []byte("00000004"), []byte("0123456701234567"), 0, 0)
n.put([]byte("00000005"), []byte("00000005"), []byte("0123456701234567"), 0, 0)
// Split.
n.split(4096)
if n.parent != nil {
t.Fatalf("expected nil parent")
}
}

View File

@ -1,197 +0,0 @@
package bolt
import (
"fmt"
"os"
"sort"
"unsafe"
)
const pageHeaderSize = int(unsafe.Offsetof(((*page)(nil)).ptr))
const minKeysPerPage = 2
const branchPageElementSize = int(unsafe.Sizeof(branchPageElement{}))
const leafPageElementSize = int(unsafe.Sizeof(leafPageElement{}))
const (
branchPageFlag = 0x01
leafPageFlag = 0x02
metaPageFlag = 0x04
freelistPageFlag = 0x10
)
const (
bucketLeafFlag = 0x01
)
type pgid uint64
type page struct {
id pgid
flags uint16
count uint16
overflow uint32
ptr uintptr
}
// typ returns a human readable page type string used for debugging.
func (p *page) typ() string {
if (p.flags & branchPageFlag) != 0 {
return "branch"
} else if (p.flags & leafPageFlag) != 0 {
return "leaf"
} else if (p.flags & metaPageFlag) != 0 {
return "meta"
} else if (p.flags & freelistPageFlag) != 0 {
return "freelist"
}
return fmt.Sprintf("unknown<%02x>", p.flags)
}
// meta returns a pointer to the metadata section of the page.
func (p *page) meta() *meta {
return (*meta)(unsafe.Pointer(&p.ptr))
}
// leafPageElement retrieves the leaf node by index
func (p *page) leafPageElement(index uint16) *leafPageElement {
n := &((*[0x7FFFFFF]leafPageElement)(unsafe.Pointer(&p.ptr)))[index]
return n
}
// leafPageElements retrieves a list of leaf nodes.
func (p *page) leafPageElements() []leafPageElement {
if p.count == 0 {
return nil
}
return ((*[0x7FFFFFF]leafPageElement)(unsafe.Pointer(&p.ptr)))[:]
}
// branchPageElement retrieves the branch node by index
func (p *page) branchPageElement(index uint16) *branchPageElement {
return &((*[0x7FFFFFF]branchPageElement)(unsafe.Pointer(&p.ptr)))[index]
}
// branchPageElements retrieves a list of branch nodes.
func (p *page) branchPageElements() []branchPageElement {
if p.count == 0 {
return nil
}
return ((*[0x7FFFFFF]branchPageElement)(unsafe.Pointer(&p.ptr)))[:]
}
// dump writes n bytes of the page to STDERR as hex output.
func (p *page) hexdump(n int) {
buf := (*[maxAllocSize]byte)(unsafe.Pointer(p))[:n]
fmt.Fprintf(os.Stderr, "%x\n", buf)
}
type pages []*page
func (s pages) Len() int { return len(s) }
func (s pages) Swap(i, j int) { s[i], s[j] = s[j], s[i] }
func (s pages) Less(i, j int) bool { return s[i].id < s[j].id }
// branchPageElement represents a node on a branch page.
type branchPageElement struct {
pos uint32
ksize uint32
pgid pgid
}
// key returns a byte slice of the node key.
func (n *branchPageElement) key() []byte {
buf := (*[maxAllocSize]byte)(unsafe.Pointer(n))
return (*[maxAllocSize]byte)(unsafe.Pointer(&buf[n.pos]))[:n.ksize]
}
// leafPageElement represents a node on a leaf page.
type leafPageElement struct {
flags uint32
pos uint32
ksize uint32
vsize uint32
}
// key returns a byte slice of the node key.
func (n *leafPageElement) key() []byte {
buf := (*[maxAllocSize]byte)(unsafe.Pointer(n))
return (*[maxAllocSize]byte)(unsafe.Pointer(&buf[n.pos]))[:n.ksize:n.ksize]
}
// value returns a byte slice of the node value.
func (n *leafPageElement) value() []byte {
buf := (*[maxAllocSize]byte)(unsafe.Pointer(n))
return (*[maxAllocSize]byte)(unsafe.Pointer(&buf[n.pos+n.ksize]))[:n.vsize:n.vsize]
}
// PageInfo represents human readable information about a page.
type PageInfo struct {
ID int
Type string
Count int
OverflowCount int
}
type pgids []pgid
func (s pgids) Len() int { return len(s) }
func (s pgids) Swap(i, j int) { s[i], s[j] = s[j], s[i] }
func (s pgids) Less(i, j int) bool { return s[i] < s[j] }
// merge returns the sorted union of a and b.
func (a pgids) merge(b pgids) pgids {
// Return the opposite slice if one is nil.
if len(a) == 0 {
return b
}
if len(b) == 0 {
return a
}
merged := make(pgids, len(a)+len(b))
mergepgids(merged, a, b)
return merged
}
// mergepgids copies the sorted union of a and b into dst.
// If dst is too small, it panics.
func mergepgids(dst, a, b pgids) {
if len(dst) < len(a)+len(b) {
panic(fmt.Errorf("mergepgids bad len %d < %d + %d", len(dst), len(a), len(b)))
}
// Copy in the opposite slice if one is nil.
if len(a) == 0 {
copy(dst, b)
return
}
if len(b) == 0 {
copy(dst, a)
return
}
// Merged will hold all elements from both lists.
merged := dst[:0]
// Assign lead to the slice with a lower starting value, follow to the higher value.
lead, follow := a, b
if b[0] < a[0] {
lead, follow = b, a
}
// Continue while there are elements in the lead.
for len(lead) > 0 {
// Merge largest prefix of lead that is ahead of follow[0].
n := sort.Search(len(lead), func(i int) bool { return lead[i] > follow[0] })
merged = append(merged, lead[:n]...)
if n >= len(lead) {
break
}
// Swap lead and follow.
lead, follow = follow, lead[n:]
}
// Append what's left in follow.
_ = append(merged, follow...)
}

View File

@ -1,72 +0,0 @@
package bolt
import (
"reflect"
"sort"
"testing"
"testing/quick"
)
// Ensure that the page type can be returned in human readable format.
func TestPage_typ(t *testing.T) {
if typ := (&page{flags: branchPageFlag}).typ(); typ != "branch" {
t.Fatalf("exp=branch; got=%v", typ)
}
if typ := (&page{flags: leafPageFlag}).typ(); typ != "leaf" {
t.Fatalf("exp=leaf; got=%v", typ)
}
if typ := (&page{flags: metaPageFlag}).typ(); typ != "meta" {
t.Fatalf("exp=meta; got=%v", typ)
}
if typ := (&page{flags: freelistPageFlag}).typ(); typ != "freelist" {
t.Fatalf("exp=freelist; got=%v", typ)
}
if typ := (&page{flags: 20000}).typ(); typ != "unknown<4e20>" {
t.Fatalf("exp=unknown<4e20>; got=%v", typ)
}
}
// Ensure that the hexdump debugging function doesn't blow up.
func TestPage_dump(t *testing.T) {
(&page{id: 256}).hexdump(16)
}
func TestPgids_merge(t *testing.T) {
a := pgids{4, 5, 6, 10, 11, 12, 13, 27}
b := pgids{1, 3, 8, 9, 25, 30}
c := a.merge(b)
if !reflect.DeepEqual(c, pgids{1, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 25, 27, 30}) {
t.Errorf("mismatch: %v", c)
}
a = pgids{4, 5, 6, 10, 11, 12, 13, 27, 35, 36}
b = pgids{8, 9, 25, 30}
c = a.merge(b)
if !reflect.DeepEqual(c, pgids{4, 5, 6, 8, 9, 10, 11, 12, 13, 25, 27, 30, 35, 36}) {
t.Errorf("mismatch: %v", c)
}
}
func TestPgids_merge_quick(t *testing.T) {
if err := quick.Check(func(a, b pgids) bool {
// Sort incoming lists.
sort.Sort(a)
sort.Sort(b)
// Merge the two lists together.
got := a.merge(b)
// The expected value should be the two lists combined and sorted.
exp := append(a, b...)
sort.Sort(exp)
if !reflect.DeepEqual(exp, got) {
t.Errorf("\nexp=%+v\ngot=%+v\n", exp, got)
return false
}
return true
}, nil); err != nil {
t.Fatal(err)
}
}

View File

@ -1,87 +0,0 @@
package bolt_test
import (
"bytes"
"flag"
"fmt"
"math/rand"
"os"
"reflect"
"testing/quick"
"time"
)
// testing/quick defaults to 5 iterations and a random seed.
// You can override these settings from the command line:
//
// -quick.count The number of iterations to perform.
// -quick.seed The seed to use for randomizing.
// -quick.maxitems The maximum number of items to insert into a DB.
// -quick.maxksize The maximum size of a key.
// -quick.maxvsize The maximum size of a value.
//
var qcount, qseed, qmaxitems, qmaxksize, qmaxvsize int
func init() {
flag.IntVar(&qcount, "quick.count", 5, "")
flag.IntVar(&qseed, "quick.seed", int(time.Now().UnixNano())%100000, "")
flag.IntVar(&qmaxitems, "quick.maxitems", 1000, "")
flag.IntVar(&qmaxksize, "quick.maxksize", 1024, "")
flag.IntVar(&qmaxvsize, "quick.maxvsize", 1024, "")
flag.Parse()
fmt.Fprintln(os.Stderr, "seed:", qseed)
fmt.Fprintf(os.Stderr, "quick settings: count=%v, items=%v, ksize=%v, vsize=%v\n", qcount, qmaxitems, qmaxksize, qmaxvsize)
}
func qconfig() *quick.Config {
return &quick.Config{
MaxCount: qcount,
Rand: rand.New(rand.NewSource(int64(qseed))),
}
}
type testdata []testdataitem
func (t testdata) Len() int { return len(t) }
func (t testdata) Swap(i, j int) { t[i], t[j] = t[j], t[i] }
func (t testdata) Less(i, j int) bool { return bytes.Compare(t[i].Key, t[j].Key) == -1 }
func (t testdata) Generate(rand *rand.Rand, size int) reflect.Value {
n := rand.Intn(qmaxitems-1) + 1
items := make(testdata, n)
used := make(map[string]bool)
for i := 0; i < n; i++ {
item := &items[i]
// Ensure that keys are unique by looping until we find one that we have not already used.
for {
item.Key = randByteSlice(rand, 1, qmaxksize)
if !used[string(item.Key)] {
used[string(item.Key)] = true
break
}
}
item.Value = randByteSlice(rand, 0, qmaxvsize)
}
return reflect.ValueOf(items)
}
type revtestdata []testdataitem
func (t revtestdata) Len() int { return len(t) }
func (t revtestdata) Swap(i, j int) { t[i], t[j] = t[j], t[i] }
func (t revtestdata) Less(i, j int) bool { return bytes.Compare(t[i].Key, t[j].Key) == 1 }
type testdataitem struct {
Key []byte
Value []byte
}
func randByteSlice(rand *rand.Rand, minSize, maxSize int) []byte {
n := rand.Intn(maxSize-minSize) + minSize
b := make([]byte, n)
for i := 0; i < n; i++ {
b[i] = byte(rand.Intn(255))
}
return b
}

View File

@ -1,47 +0,0 @@
package bolt_test
import (
"testing"
"github.com/coreos/bbolt"
)
func TestSimulateNoFreeListSync_1op_1p(t *testing.T) {
testSimulate(t, &bolt.Options{NoFreelistSync: true}, 8, 1, 1)
}
func TestSimulateNoFreeListSync_10op_1p(t *testing.T) {
testSimulate(t, &bolt.Options{NoFreelistSync: true}, 8, 10, 1)
}
func TestSimulateNoFreeListSync_100op_1p(t *testing.T) {
testSimulate(t, &bolt.Options{NoFreelistSync: true}, 8, 100, 1)
}
func TestSimulateNoFreeListSync_1000op_1p(t *testing.T) {
testSimulate(t, &bolt.Options{NoFreelistSync: true}, 8, 1000, 1)
}
func TestSimulateNoFreeListSync_10000op_1p(t *testing.T) {
testSimulate(t, &bolt.Options{NoFreelistSync: true}, 8, 10000, 1)
}
func TestSimulateNoFreeListSync_10op_10p(t *testing.T) {
testSimulate(t, &bolt.Options{NoFreelistSync: true}, 8, 10, 10)
}
func TestSimulateNoFreeListSync_100op_10p(t *testing.T) {
testSimulate(t, &bolt.Options{NoFreelistSync: true}, 8, 100, 10)
}
func TestSimulateNoFreeListSync_1000op_10p(t *testing.T) {
testSimulate(t, &bolt.Options{NoFreelistSync: true}, 8, 1000, 10)
}
func TestSimulateNoFreeListSync_10000op_10p(t *testing.T) {
testSimulate(t, &bolt.Options{NoFreelistSync: true}, 8, 10000, 10)
}
func TestSimulateNoFreeListSync_100op_100p(t *testing.T) {
testSimulate(t, &bolt.Options{NoFreelistSync: true}, 8, 100, 100)
}
func TestSimulateNoFreeListSync_1000op_100p(t *testing.T) {
testSimulate(t, &bolt.Options{NoFreelistSync: true}, 8, 1000, 100)
}
func TestSimulateNoFreeListSync_10000op_100p(t *testing.T) {
testSimulate(t, &bolt.Options{NoFreelistSync: true}, 8, 10000, 100)
}
func TestSimulateNoFreeListSync_10000op_1000p(t *testing.T) {
testSimulate(t, &bolt.Options{NoFreelistSync: true}, 8, 10000, 1000)
}

View File

@ -1,336 +0,0 @@
package bolt_test
import (
"bytes"
"fmt"
"math/rand"
"sync"
"testing"
"github.com/coreos/bbolt"
)
func TestSimulate_1op_1p(t *testing.T) { testSimulate(t, nil, 1, 1, 1) }
func TestSimulate_10op_1p(t *testing.T) { testSimulate(t, nil, 1, 10, 1) }
func TestSimulate_100op_1p(t *testing.T) { testSimulate(t, nil, 1, 100, 1) }
func TestSimulate_1000op_1p(t *testing.T) { testSimulate(t, nil, 1, 1000, 1) }
func TestSimulate_10000op_1p(t *testing.T) { testSimulate(t, nil, 1, 10000, 1) }
func TestSimulate_10op_10p(t *testing.T) { testSimulate(t, nil, 1, 10, 10) }
func TestSimulate_100op_10p(t *testing.T) { testSimulate(t, nil, 1, 100, 10) }
func TestSimulate_1000op_10p(t *testing.T) { testSimulate(t, nil, 1, 1000, 10) }
func TestSimulate_10000op_10p(t *testing.T) { testSimulate(t, nil, 1, 10000, 10) }
func TestSimulate_100op_100p(t *testing.T) { testSimulate(t, nil, 1, 100, 100) }
func TestSimulate_1000op_100p(t *testing.T) { testSimulate(t, nil, 1, 1000, 100) }
func TestSimulate_10000op_100p(t *testing.T) { testSimulate(t, nil, 1, 10000, 100) }
func TestSimulate_10000op_1000p(t *testing.T) { testSimulate(t, nil, 1, 10000, 1000) }
// Randomly generate operations on a given database with multiple clients to ensure consistency and thread safety.
func testSimulate(t *testing.T, openOption *bolt.Options, round, threadCount, parallelism int) {
if testing.Short() {
t.Skip("skipping test in short mode.")
}
rand.Seed(int64(qseed))
// A list of operations that readers and writers can perform.
var readerHandlers = []simulateHandler{simulateGetHandler}
var writerHandlers = []simulateHandler{simulateGetHandler, simulatePutHandler}
var versions = make(map[int]*QuickDB)
versions[1] = NewQuickDB()
db := MustOpenWithOption(openOption)
defer db.MustClose()
var mutex sync.Mutex
// Run n threads in parallel, each with their own operation.
var wg sync.WaitGroup
for n := 0; n < round; n++ {
var threads = make(chan bool, parallelism)
var i int
for {
threads <- true
wg.Add(1)
writable := ((rand.Int() % 100) < 20) // 20% writers
// Choose an operation to execute.
var handler simulateHandler
if writable {
handler = writerHandlers[rand.Intn(len(writerHandlers))]
} else {
handler = readerHandlers[rand.Intn(len(readerHandlers))]
}
// Execute a thread for the given operation.
go func(writable bool, handler simulateHandler) {
defer wg.Done()
// Start transaction.
tx, err := db.Begin(writable)
if err != nil {
t.Fatal("tx begin: ", err)
}
// Obtain current state of the dataset.
mutex.Lock()
var qdb = versions[tx.ID()]
if writable {
qdb = versions[tx.ID()-1].Copy()
}
mutex.Unlock()
// Make sure we commit/rollback the tx at the end and update the state.
if writable {
defer func() {
mutex.Lock()
versions[tx.ID()] = qdb
mutex.Unlock()
if err := tx.Commit(); err != nil {
t.Fatal(err)
}
}()
} else {
defer func() { _ = tx.Rollback() }()
}
// Ignore operation if we don't have data yet.
if qdb == nil {
return
}
// Execute handler.
handler(tx, qdb)
// Release a thread back to the scheduling loop.
<-threads
}(writable, handler)
i++
if i > threadCount {
break
}
}
// Wait until all threads are done.
wg.Wait()
db.MustClose()
db.MustReopen()
}
}
type simulateHandler func(tx *bolt.Tx, qdb *QuickDB)
// Retrieves a key from the database and verifies that it is what is expected.
func simulateGetHandler(tx *bolt.Tx, qdb *QuickDB) {
// Randomly retrieve an existing exist.
keys := qdb.Rand()
if len(keys) == 0 {
return
}
// Retrieve root bucket.
b := tx.Bucket(keys[0])
if b == nil {
panic(fmt.Sprintf("bucket[0] expected: %08x\n", trunc(keys[0], 4)))
}
// Drill into nested buckets.
for _, key := range keys[1 : len(keys)-1] {
b = b.Bucket(key)
if b == nil {
panic(fmt.Sprintf("bucket[n] expected: %v -> %v\n", keys, key))
}
}
// Verify key/value on the final bucket.
expected := qdb.Get(keys)
actual := b.Get(keys[len(keys)-1])
if !bytes.Equal(actual, expected) {
fmt.Println("=== EXPECTED ===")
fmt.Println(expected)
fmt.Println("=== ACTUAL ===")
fmt.Println(actual)
fmt.Println("=== END ===")
panic("value mismatch")
}
}
// Inserts a key into the database.
func simulatePutHandler(tx *bolt.Tx, qdb *QuickDB) {
var err error
keys, value := randKeys(), randValue()
// Retrieve root bucket.
b := tx.Bucket(keys[0])
if b == nil {
b, err = tx.CreateBucket(keys[0])
if err != nil {
panic("create bucket: " + err.Error())
}
}
// Create nested buckets, if necessary.
for _, key := range keys[1 : len(keys)-1] {
child := b.Bucket(key)
if child != nil {
b = child
} else {
b, err = b.CreateBucket(key)
if err != nil {
panic("create bucket: " + err.Error())
}
}
}
// Insert into database.
if err := b.Put(keys[len(keys)-1], value); err != nil {
panic("put: " + err.Error())
}
// Insert into in-memory database.
qdb.Put(keys, value)
}
// QuickDB is an in-memory database that replicates the functionality of the
// Bolt DB type except that it is entirely in-memory. It is meant for testing
// that the Bolt database is consistent.
type QuickDB struct {
sync.RWMutex
m map[string]interface{}
}
// NewQuickDB returns an instance of QuickDB.
func NewQuickDB() *QuickDB {
return &QuickDB{m: make(map[string]interface{})}
}
// Get retrieves the value at a key path.
func (db *QuickDB) Get(keys [][]byte) []byte {
db.RLock()
defer db.RUnlock()
m := db.m
for _, key := range keys[:len(keys)-1] {
value := m[string(key)]
if value == nil {
return nil
}
switch value := value.(type) {
case map[string]interface{}:
m = value
case []byte:
return nil
}
}
// Only return if it's a simple value.
if value, ok := m[string(keys[len(keys)-1])].([]byte); ok {
return value
}
return nil
}
// Put inserts a value into a key path.
func (db *QuickDB) Put(keys [][]byte, value []byte) {
db.Lock()
defer db.Unlock()
// Build buckets all the way down the key path.
m := db.m
for _, key := range keys[:len(keys)-1] {
if _, ok := m[string(key)].([]byte); ok {
return // Keypath intersects with a simple value. Do nothing.
}
if m[string(key)] == nil {
m[string(key)] = make(map[string]interface{})
}
m = m[string(key)].(map[string]interface{})
}
// Insert value into the last key.
m[string(keys[len(keys)-1])] = value
}
// Rand returns a random key path that points to a simple value.
func (db *QuickDB) Rand() [][]byte {
db.RLock()
defer db.RUnlock()
if len(db.m) == 0 {
return nil
}
var keys [][]byte
db.rand(db.m, &keys)
return keys
}
func (db *QuickDB) rand(m map[string]interface{}, keys *[][]byte) {
i, index := 0, rand.Intn(len(m))
for k, v := range m {
if i == index {
*keys = append(*keys, []byte(k))
if v, ok := v.(map[string]interface{}); ok {
db.rand(v, keys)
}
return
}
i++
}
panic("quickdb rand: out-of-range")
}
// Copy copies the entire database.
func (db *QuickDB) Copy() *QuickDB {
db.RLock()
defer db.RUnlock()
return &QuickDB{m: db.copy(db.m)}
}
func (db *QuickDB) copy(m map[string]interface{}) map[string]interface{} {
clone := make(map[string]interface{}, len(m))
for k, v := range m {
switch v := v.(type) {
case map[string]interface{}:
clone[k] = db.copy(v)
default:
clone[k] = v
}
}
return clone
}
func randKey() []byte {
var min, max = 1, 1024
n := rand.Intn(max-min) + min
b := make([]byte, n)
for i := 0; i < n; i++ {
b[i] = byte(rand.Intn(255))
}
return b
}
func randKeys() [][]byte {
var keys [][]byte
var count = rand.Intn(2) + 2
for i := 0; i < count; i++ {
keys = append(keys, randKey())
}
return keys
}
func randValue() []byte {
n := rand.Intn(8192)
b := make([]byte, n)
for i := 0; i < n; i++ {
b[i] = byte(rand.Intn(255))
}
return b
}

707
vendor/github.com/coreos/bbolt/tx.go generated vendored
View File

@ -1,707 +0,0 @@
package bolt
import (
"fmt"
"io"
"os"
"sort"
"strings"
"time"
"unsafe"
)
// txid represents the internal transaction identifier.
type txid uint64
// Tx represents a read-only or read/write transaction on the database.
// Read-only transactions can be used for retrieving values for keys and creating cursors.
// Read/write transactions can create and remove buckets and create and remove keys.
//
// IMPORTANT: You must commit or rollback transactions when you are done with
// them. Pages can not be reclaimed by the writer until no more transactions
// are using them. A long running read transaction can cause the database to
// quickly grow.
type Tx struct {
writable bool
managed bool
db *DB
meta *meta
root Bucket
pages map[pgid]*page
stats TxStats
commitHandlers []func()
// WriteFlag specifies the flag for write-related methods like WriteTo().
// Tx opens the database file with the specified flag to copy the data.
//
// By default, the flag is unset, which works well for mostly in-memory
// workloads. For databases that are much larger than available RAM,
// set the flag to syscall.O_DIRECT to avoid trashing the page cache.
WriteFlag int
}
// init initializes the transaction.
func (tx *Tx) init(db *DB) {
tx.db = db
tx.pages = nil
// Copy the meta page since it can be changed by the writer.
tx.meta = &meta{}
db.meta().copy(tx.meta)
// Copy over the root bucket.
tx.root = newBucket(tx)
tx.root.bucket = &bucket{}
*tx.root.bucket = tx.meta.root
// Increment the transaction id and add a page cache for writable transactions.
if tx.writable {
tx.pages = make(map[pgid]*page)
tx.meta.txid += txid(1)
}
}
// ID returns the transaction id.
func (tx *Tx) ID() int {
return int(tx.meta.txid)
}
// DB returns a reference to the database that created the transaction.
func (tx *Tx) DB() *DB {
return tx.db
}
// Size returns current database size in bytes as seen by this transaction.
func (tx *Tx) Size() int64 {
return int64(tx.meta.pgid) * int64(tx.db.pageSize)
}
// Writable returns whether the transaction can perform write operations.
func (tx *Tx) Writable() bool {
return tx.writable
}
// Cursor creates a cursor associated with the root bucket.
// All items in the cursor will return a nil value because all root bucket keys point to buckets.
// The cursor is only valid as long as the transaction is open.
// Do not use a cursor after the transaction is closed.
func (tx *Tx) Cursor() *Cursor {
return tx.root.Cursor()
}
// Stats retrieves a copy of the current transaction statistics.
func (tx *Tx) Stats() TxStats {
return tx.stats
}
// Bucket retrieves a bucket by name.
// Returns nil if the bucket does not exist.
// The bucket instance is only valid for the lifetime of the transaction.
func (tx *Tx) Bucket(name []byte) *Bucket {
return tx.root.Bucket(name)
}
// CreateBucket creates a new bucket.
// Returns an error if the bucket already exists, if the bucket name is blank, or if the bucket name is too long.
// The bucket instance is only valid for the lifetime of the transaction.
func (tx *Tx) CreateBucket(name []byte) (*Bucket, error) {
return tx.root.CreateBucket(name)
}
// CreateBucketIfNotExists creates a new bucket if it doesn't already exist.
// Returns an error if the bucket name is blank, or if the bucket name is too long.
// The bucket instance is only valid for the lifetime of the transaction.
func (tx *Tx) CreateBucketIfNotExists(name []byte) (*Bucket, error) {
return tx.root.CreateBucketIfNotExists(name)
}
// DeleteBucket deletes a bucket.
// Returns an error if the bucket cannot be found or if the key represents a non-bucket value.
func (tx *Tx) DeleteBucket(name []byte) error {
return tx.root.DeleteBucket(name)
}
// ForEach executes a function for each bucket in the root.
// If the provided function returns an error then the iteration is stopped and
// the error is returned to the caller.
func (tx *Tx) ForEach(fn func(name []byte, b *Bucket) error) error {
return tx.root.ForEach(func(k, v []byte) error {
return fn(k, tx.root.Bucket(k))
})
}
// OnCommit adds a handler function to be executed after the transaction successfully commits.
func (tx *Tx) OnCommit(fn func()) {
tx.commitHandlers = append(tx.commitHandlers, fn)
}
// Commit writes all changes to disk and updates the meta page.
// Returns an error if a disk write error occurs, or if Commit is
// called on a read-only transaction.
func (tx *Tx) Commit() error {
_assert(!tx.managed, "managed tx commit not allowed")
if tx.db == nil {
return ErrTxClosed
} else if !tx.writable {
return ErrTxNotWritable
}
// TODO(benbjohnson): Use vectorized I/O to write out dirty pages.
// Rebalance nodes which have had deletions.
var startTime = time.Now()
tx.root.rebalance()
if tx.stats.Rebalance > 0 {
tx.stats.RebalanceTime += time.Since(startTime)
}
// spill data onto dirty pages.
startTime = time.Now()
if err := tx.root.spill(); err != nil {
tx.rollback()
return err
}
tx.stats.SpillTime += time.Since(startTime)
// Free the old root bucket.
tx.meta.root.root = tx.root.root
// Free the old freelist because commit writes out a fresh freelist.
if tx.meta.freelist != pgidNoFreelist {
tx.db.freelist.free(tx.meta.txid, tx.db.page(tx.meta.freelist))
}
if !tx.db.NoFreelistSync {
err := tx.commitFreelist()
if err != nil {
return err
}
} else {
tx.meta.freelist = pgidNoFreelist
}
// Write dirty pages to disk.
startTime = time.Now()
if err := tx.write(); err != nil {
tx.rollback()
return err
}
// If strict mode is enabled then perform a consistency check.
// Only the first consistency error is reported in the panic.
if tx.db.StrictMode {
ch := tx.Check()
var errs []string
for {
err, ok := <-ch
if !ok {
break
}
errs = append(errs, err.Error())
}
if len(errs) > 0 {
panic("check fail: " + strings.Join(errs, "\n"))
}
}
// Write meta to disk.
if err := tx.writeMeta(); err != nil {
tx.rollback()
return err
}
tx.stats.WriteTime += time.Since(startTime)
// Finalize the transaction.
tx.close()
// Execute commit handlers now that the locks have been removed.
for _, fn := range tx.commitHandlers {
fn()
}
return nil
}
func (tx *Tx) commitFreelist() error {
// Allocate new pages for the new free list. This will overestimate
// the size of the freelist but not underestimate the size (which would be bad).
opgid := tx.meta.pgid
p, err := tx.allocate((tx.db.freelist.size() / tx.db.pageSize) + 1)
if err != nil {
tx.rollback()
return err
}
if err := tx.db.freelist.write(p); err != nil {
tx.rollback()
return err
}
tx.meta.freelist = p.id
// If the high water mark has moved up then attempt to grow the database.
if tx.meta.pgid > opgid {
if err := tx.db.grow(int(tx.meta.pgid+1) * tx.db.pageSize); err != nil {
tx.rollback()
return err
}
}
return nil
}
// Rollback closes the transaction and ignores all previous updates. Read-only
// transactions must be rolled back and not committed.
func (tx *Tx) Rollback() error {
_assert(!tx.managed, "managed tx rollback not allowed")
if tx.db == nil {
return ErrTxClosed
}
tx.rollback()
return nil
}
func (tx *Tx) rollback() {
if tx.db == nil {
return
}
if tx.writable {
tx.db.freelist.rollback(tx.meta.txid)
tx.db.freelist.reload(tx.db.page(tx.db.meta().freelist))
}
tx.close()
}
func (tx *Tx) close() {
if tx.db == nil {
return
}
if tx.writable {
// Grab freelist stats.
var freelistFreeN = tx.db.freelist.free_count()
var freelistPendingN = tx.db.freelist.pending_count()
var freelistAlloc = tx.db.freelist.size()
// Remove transaction ref & writer lock.
tx.db.rwtx = nil
tx.db.rwlock.Unlock()
// Merge statistics.
tx.db.statlock.Lock()
tx.db.stats.FreePageN = freelistFreeN
tx.db.stats.PendingPageN = freelistPendingN
tx.db.stats.FreeAlloc = (freelistFreeN + freelistPendingN) * tx.db.pageSize
tx.db.stats.FreelistInuse = freelistAlloc
tx.db.stats.TxStats.add(&tx.stats)
tx.db.statlock.Unlock()
} else {
tx.db.removeTx(tx)
}
// Clear all references.
tx.db = nil
tx.meta = nil
tx.root = Bucket{tx: tx}
tx.pages = nil
}
// Copy writes the entire database to a writer.
// This function exists for backwards compatibility.
//
// Deprecated; Use WriteTo() instead.
func (tx *Tx) Copy(w io.Writer) error {
_, err := tx.WriteTo(w)
return err
}
// WriteTo writes the entire database to a writer.
// If err == nil then exactly tx.Size() bytes will be written into the writer.
func (tx *Tx) WriteTo(w io.Writer) (n int64, err error) {
// Attempt to open reader with WriteFlag
f, err := os.OpenFile(tx.db.path, os.O_RDONLY|tx.WriteFlag, 0)
if err != nil {
return 0, err
}
defer func() {
if cerr := f.Close(); err == nil {
err = cerr
}
}()
// Generate a meta page. We use the same page data for both meta pages.
buf := make([]byte, tx.db.pageSize)
page := (*page)(unsafe.Pointer(&buf[0]))
page.flags = metaPageFlag
*page.meta() = *tx.meta
// Write meta 0.
page.id = 0
page.meta().checksum = page.meta().sum64()
nn, err := w.Write(buf)
n += int64(nn)
if err != nil {
return n, fmt.Errorf("meta 0 copy: %s", err)
}
// Write meta 1 with a lower transaction id.
page.id = 1
page.meta().txid -= 1
page.meta().checksum = page.meta().sum64()
nn, err = w.Write(buf)
n += int64(nn)
if err != nil {
return n, fmt.Errorf("meta 1 copy: %s", err)
}
// Move past the meta pages in the file.
if _, err := f.Seek(int64(tx.db.pageSize*2), io.SeekStart); err != nil {
return n, fmt.Errorf("seek: %s", err)
}
// Copy data pages.
wn, err := io.CopyN(w, f, tx.Size()-int64(tx.db.pageSize*2))
n += wn
if err != nil {
return n, err
}
return n, nil
}
// CopyFile copies the entire database to file at the given path.
// A reader transaction is maintained during the copy so it is safe to continue
// using the database while a copy is in progress.
func (tx *Tx) CopyFile(path string, mode os.FileMode) error {
f, err := os.OpenFile(path, os.O_RDWR|os.O_CREATE|os.O_TRUNC, mode)
if err != nil {
return err
}
err = tx.Copy(f)
if err != nil {
_ = f.Close()
return err
}
return f.Close()
}
// Check performs several consistency checks on the database for this transaction.
// An error is returned if any inconsistency is found.
//
// It can be safely run concurrently on a writable transaction. However, this
// incurs a high cost for large databases and databases with a lot of subbuckets
// because of caching. This overhead can be removed if running on a read-only
// transaction, however, it is not safe to execute other writer transactions at
// the same time.
func (tx *Tx) Check() <-chan error {
ch := make(chan error)
go tx.check(ch)
return ch
}
func (tx *Tx) check(ch chan error) {
// Force loading free list if opened in ReadOnly mode.
tx.db.loadFreelist()
// Check if any pages are double freed.
freed := make(map[pgid]bool)
all := make([]pgid, tx.db.freelist.count())
tx.db.freelist.copyall(all)
for _, id := range all {
if freed[id] {
ch <- fmt.Errorf("page %d: already freed", id)
}
freed[id] = true
}
// Track every reachable page.
reachable := make(map[pgid]*page)
reachable[0] = tx.page(0) // meta0
reachable[1] = tx.page(1) // meta1
if tx.meta.freelist != pgidNoFreelist {
for i := uint32(0); i <= tx.page(tx.meta.freelist).overflow; i++ {
reachable[tx.meta.freelist+pgid(i)] = tx.page(tx.meta.freelist)
}
}
// Recursively check buckets.
tx.checkBucket(&tx.root, reachable, freed, ch)
// Ensure all pages below high water mark are either reachable or freed.
for i := pgid(0); i < tx.meta.pgid; i++ {
_, isReachable := reachable[i]
if !isReachable && !freed[i] {
ch <- fmt.Errorf("page %d: unreachable unfreed", int(i))
}
}
// Close the channel to signal completion.
close(ch)
}
func (tx *Tx) checkBucket(b *Bucket, reachable map[pgid]*page, freed map[pgid]bool, ch chan error) {
// Ignore inline buckets.
if b.root == 0 {
return
}
// Check every page used by this bucket.
b.tx.forEachPage(b.root, 0, func(p *page, _ int) {
if p.id > tx.meta.pgid {
ch <- fmt.Errorf("page %d: out of bounds: %d", int(p.id), int(b.tx.meta.pgid))
}
// Ensure each page is only referenced once.
for i := pgid(0); i <= pgid(p.overflow); i++ {
var id = p.id + i
if _, ok := reachable[id]; ok {
ch <- fmt.Errorf("page %d: multiple references", int(id))
}
reachable[id] = p
}
// We should only encounter un-freed leaf and branch pages.
if freed[p.id] {
ch <- fmt.Errorf("page %d: reachable freed", int(p.id))
} else if (p.flags&branchPageFlag) == 0 && (p.flags&leafPageFlag) == 0 {
ch <- fmt.Errorf("page %d: invalid type: %s", int(p.id), p.typ())
}
})
// Check each bucket within this bucket.
_ = b.ForEach(func(k, v []byte) error {
if child := b.Bucket(k); child != nil {
tx.checkBucket(child, reachable, freed, ch)
}
return nil
})
}
// allocate returns a contiguous block of memory starting at a given page.
func (tx *Tx) allocate(count int) (*page, error) {
p, err := tx.db.allocate(tx.meta.txid, count)
if err != nil {
return nil, err
}
// Save to our page cache.
tx.pages[p.id] = p
// Update statistics.
tx.stats.PageCount += count
tx.stats.PageAlloc += count * tx.db.pageSize
return p, nil
}
// write writes any dirty pages to disk.
func (tx *Tx) write() error {
// Sort pages by id.
pages := make(pages, 0, len(tx.pages))
for _, p := range tx.pages {
pages = append(pages, p)
}
// Clear out page cache early.
tx.pages = make(map[pgid]*page)
sort.Sort(pages)
// Write pages to disk in order.
for _, p := range pages {
size := (int(p.overflow) + 1) * tx.db.pageSize
offset := int64(p.id) * int64(tx.db.pageSize)
// Write out page in "max allocation" sized chunks.
ptr := (*[maxAllocSize]byte)(unsafe.Pointer(p))
for {
// Limit our write to our max allocation size.
sz := size
if sz > maxAllocSize-1 {
sz = maxAllocSize - 1
}
// Write chunk to disk.
buf := ptr[:sz]
if _, err := tx.db.ops.writeAt(buf, offset); err != nil {
return err
}
// Update statistics.
tx.stats.Write++
// Exit inner for loop if we've written all the chunks.
size -= sz
if size == 0 {
break
}
// Otherwise move offset forward and move pointer to next chunk.
offset += int64(sz)
ptr = (*[maxAllocSize]byte)(unsafe.Pointer(&ptr[sz]))
}
}
// Ignore file sync if flag is set on DB.
if !tx.db.NoSync || IgnoreNoSync {
if err := fdatasync(tx.db); err != nil {
return err
}
}
// Put small pages back to page pool.
for _, p := range pages {
// Ignore page sizes over 1 page.
// These are allocated using make() instead of the page pool.
if int(p.overflow) != 0 {
continue
}
buf := (*[maxAllocSize]byte)(unsafe.Pointer(p))[:tx.db.pageSize]
// See https://go.googlesource.com/go/+/f03c9202c43e0abb130669852082117ca50aa9b1
for i := range buf {
buf[i] = 0
}
tx.db.pagePool.Put(buf)
}
return nil
}
// writeMeta writes the meta to the disk.
func (tx *Tx) writeMeta() error {
// Create a temporary buffer for the meta page.
buf := make([]byte, tx.db.pageSize)
p := tx.db.pageInBuffer(buf, 0)
tx.meta.write(p)
// Write the meta page to file.
if _, err := tx.db.ops.writeAt(buf, int64(p.id)*int64(tx.db.pageSize)); err != nil {
return err
}
if !tx.db.NoSync || IgnoreNoSync {
if err := fdatasync(tx.db); err != nil {
return err
}
}
// Update statistics.
tx.stats.Write++
return nil
}
// page returns a reference to the page with a given id.
// If page has been written to then a temporary buffered page is returned.
func (tx *Tx) page(id pgid) *page {
// Check the dirty pages first.
if tx.pages != nil {
if p, ok := tx.pages[id]; ok {
return p
}
}
// Otherwise return directly from the mmap.
return tx.db.page(id)
}
// forEachPage iterates over every page within a given page and executes a function.
func (tx *Tx) forEachPage(pgid pgid, depth int, fn func(*page, int)) {
p := tx.page(pgid)
// Execute function.
fn(p, depth)
// Recursively loop over children.
if (p.flags & branchPageFlag) != 0 {
for i := 0; i < int(p.count); i++ {
elem := p.branchPageElement(uint16(i))
tx.forEachPage(elem.pgid, depth+1, fn)
}
}
}
// Page returns page information for a given page number.
// This is only safe for concurrent use when used by a writable transaction.
func (tx *Tx) Page(id int) (*PageInfo, error) {
if tx.db == nil {
return nil, ErrTxClosed
} else if pgid(id) >= tx.meta.pgid {
return nil, nil
}
// Build the page info.
p := tx.db.page(pgid(id))
info := &PageInfo{
ID: id,
Count: int(p.count),
OverflowCount: int(p.overflow),
}
// Determine the type (or if it's free).
if tx.db.freelist.freed(pgid(id)) {
info.Type = "free"
} else {
info.Type = p.typ()
}
return info, nil
}
// TxStats represents statistics about the actions performed by the transaction.
type TxStats struct {
// Page statistics.
PageCount int // number of page allocations
PageAlloc int // total bytes allocated
// Cursor statistics.
CursorCount int // number of cursors created
// Node statistics
NodeCount int // number of node allocations
NodeDeref int // number of node dereferences
// Rebalance statistics.
Rebalance int // number of node rebalances
RebalanceTime time.Duration // total time spent rebalancing
// Split/Spill statistics.
Split int // number of nodes split
Spill int // number of nodes spilled
SpillTime time.Duration // total time spent spilling
// Write statistics.
Write int // number of writes performed
WriteTime time.Duration // total time spent writing to disk
}
func (s *TxStats) add(other *TxStats) {
s.PageCount += other.PageCount
s.PageAlloc += other.PageAlloc
s.CursorCount += other.CursorCount
s.NodeCount += other.NodeCount
s.NodeDeref += other.NodeDeref
s.Rebalance += other.Rebalance
s.RebalanceTime += other.RebalanceTime
s.Split += other.Split
s.Spill += other.Spill
s.SpillTime += other.SpillTime
s.Write += other.Write
s.WriteTime += other.WriteTime
}
// Sub calculates and returns the difference between two sets of transaction stats.
// This is useful when obtaining stats at two different points and time and
// you need the performance counters that occurred within that time span.
func (s *TxStats) Sub(other *TxStats) TxStats {
var diff TxStats
diff.PageCount = s.PageCount - other.PageCount
diff.PageAlloc = s.PageAlloc - other.PageAlloc
diff.CursorCount = s.CursorCount - other.CursorCount
diff.NodeCount = s.NodeCount - other.NodeCount
diff.NodeDeref = s.NodeDeref - other.NodeDeref
diff.Rebalance = s.Rebalance - other.Rebalance
diff.RebalanceTime = s.RebalanceTime - other.RebalanceTime
diff.Split = s.Split - other.Split
diff.Spill = s.Spill - other.Spill
diff.SpillTime = s.SpillTime - other.SpillTime
diff.Write = s.Write - other.Write
diff.WriteTime = s.WriteTime - other.WriteTime
return diff
}

View File

@ -1,869 +0,0 @@
package bolt_test
import (
"bytes"
"errors"
"fmt"
"log"
"os"
"testing"
"github.com/coreos/bbolt"
)
// TestTx_Check_ReadOnly tests consistency checking on a ReadOnly database.
func TestTx_Check_ReadOnly(t *testing.T) {
db := MustOpenDB()
defer db.Close()
if err := db.Update(func(tx *bolt.Tx) error {
b, err := tx.CreateBucket([]byte("widgets"))
if err != nil {
t.Fatal(err)
}
if err := b.Put([]byte("foo"), []byte("bar")); err != nil {
t.Fatal(err)
}
return nil
}); err != nil {
t.Fatal(err)
}
if err := db.DB.Close(); err != nil {
t.Fatal(err)
}
readOnlyDB, err := bolt.Open(db.f, 0666, &bolt.Options{ReadOnly: true})
if err != nil {
t.Fatal(err)
}
defer readOnlyDB.Close()
tx, err := readOnlyDB.Begin(false)
if err != nil {
t.Fatal(err)
}
// ReadOnly DB will load freelist on Check call.
numChecks := 2
errc := make(chan error, numChecks)
check := func() {
err, _ := <-tx.Check()
errc <- err
}
// Ensure the freelist is not reloaded and does not race.
for i := 0; i < numChecks; i++ {
go check()
}
for i := 0; i < numChecks; i++ {
if err := <-errc; err != nil {
t.Fatal(err)
}
}
}
// Ensure that committing a closed transaction returns an error.
func TestTx_Commit_ErrTxClosed(t *testing.T) {
db := MustOpenDB()
defer db.MustClose()
tx, err := db.Begin(true)
if err != nil {
t.Fatal(err)
}
if _, err := tx.CreateBucket([]byte("foo")); err != nil {
t.Fatal(err)
}
if err := tx.Commit(); err != nil {
t.Fatal(err)
}
if err := tx.Commit(); err != bolt.ErrTxClosed {
t.Fatalf("unexpected error: %s", err)
}
}
// Ensure that rolling back a closed transaction returns an error.
func TestTx_Rollback_ErrTxClosed(t *testing.T) {
db := MustOpenDB()
defer db.MustClose()
tx, err := db.Begin(true)
if err != nil {
t.Fatal(err)
}
if err := tx.Rollback(); err != nil {
t.Fatal(err)
}
if err := tx.Rollback(); err != bolt.ErrTxClosed {
t.Fatalf("unexpected error: %s", err)
}
}
// Ensure that committing a read-only transaction returns an error.
func TestTx_Commit_ErrTxNotWritable(t *testing.T) {
db := MustOpenDB()
defer db.MustClose()
tx, err := db.Begin(false)
if err != nil {
t.Fatal(err)
}
if err := tx.Commit(); err != bolt.ErrTxNotWritable {
t.Fatal(err)
}
}
// Ensure that a transaction can retrieve a cursor on the root bucket.
func TestTx_Cursor(t *testing.T) {
db := MustOpenDB()
defer db.MustClose()
if err := db.Update(func(tx *bolt.Tx) error {
if _, err := tx.CreateBucket([]byte("widgets")); err != nil {
t.Fatal(err)
}
if _, err := tx.CreateBucket([]byte("woojits")); err != nil {
t.Fatal(err)
}
c := tx.Cursor()
if k, v := c.First(); !bytes.Equal(k, []byte("widgets")) {
t.Fatalf("unexpected key: %v", k)
} else if v != nil {
t.Fatalf("unexpected value: %v", v)
}
if k, v := c.Next(); !bytes.Equal(k, []byte("woojits")) {
t.Fatalf("unexpected key: %v", k)
} else if v != nil {
t.Fatalf("unexpected value: %v", v)
}
if k, v := c.Next(); k != nil {
t.Fatalf("unexpected key: %v", k)
} else if v != nil {
t.Fatalf("unexpected value: %v", k)
}
return nil
}); err != nil {
t.Fatal(err)
}
}
// Ensure that creating a bucket with a read-only transaction returns an error.
func TestTx_CreateBucket_ErrTxNotWritable(t *testing.T) {
db := MustOpenDB()
defer db.MustClose()
if err := db.View(func(tx *bolt.Tx) error {
_, err := tx.CreateBucket([]byte("foo"))
if err != bolt.ErrTxNotWritable {
t.Fatalf("unexpected error: %s", err)
}
return nil
}); err != nil {
t.Fatal(err)
}
}
// Ensure that creating a bucket on a closed transaction returns an error.
func TestTx_CreateBucket_ErrTxClosed(t *testing.T) {
db := MustOpenDB()
defer db.MustClose()
tx, err := db.Begin(true)
if err != nil {
t.Fatal(err)
}
if err := tx.Commit(); err != nil {
t.Fatal(err)
}
if _, err := tx.CreateBucket([]byte("foo")); err != bolt.ErrTxClosed {
t.Fatalf("unexpected error: %s", err)
}
}
// Ensure that a Tx can retrieve a bucket.
func TestTx_Bucket(t *testing.T) {
db := MustOpenDB()
defer db.MustClose()
if err := db.Update(func(tx *bolt.Tx) error {
if _, err := tx.CreateBucket([]byte("widgets")); err != nil {
t.Fatal(err)
}
if tx.Bucket([]byte("widgets")) == nil {
t.Fatal("expected bucket")
}
return nil
}); err != nil {
t.Fatal(err)
}
}
// Ensure that a Tx retrieving a non-existent key returns nil.
func TestTx_Get_NotFound(t *testing.T) {
db := MustOpenDB()
defer db.MustClose()
if err := db.Update(func(tx *bolt.Tx) error {
b, err := tx.CreateBucket([]byte("widgets"))
if err != nil {
t.Fatal(err)
}
if err := b.Put([]byte("foo"), []byte("bar")); err != nil {
t.Fatal(err)
}
if b.Get([]byte("no_such_key")) != nil {
t.Fatal("expected nil value")
}
return nil
}); err != nil {
t.Fatal(err)
}
}
// Ensure that a bucket can be created and retrieved.
func TestTx_CreateBucket(t *testing.T) {
db := MustOpenDB()
defer db.MustClose()
// Create a bucket.
if err := db.Update(func(tx *bolt.Tx) error {
b, err := tx.CreateBucket([]byte("widgets"))
if err != nil {
t.Fatal(err)
} else if b == nil {
t.Fatal("expected bucket")
}
return nil
}); err != nil {
t.Fatal(err)
}
// Read the bucket through a separate transaction.
if err := db.View(func(tx *bolt.Tx) error {
if tx.Bucket([]byte("widgets")) == nil {
t.Fatal("expected bucket")
}
return nil
}); err != nil {
t.Fatal(err)
}
}
// Ensure that a bucket can be created if it doesn't already exist.
func TestTx_CreateBucketIfNotExists(t *testing.T) {
db := MustOpenDB()
defer db.MustClose()
if err := db.Update(func(tx *bolt.Tx) error {
// Create bucket.
if b, err := tx.CreateBucketIfNotExists([]byte("widgets")); err != nil {
t.Fatal(err)
} else if b == nil {
t.Fatal("expected bucket")
}
// Create bucket again.
if b, err := tx.CreateBucketIfNotExists([]byte("widgets")); err != nil {
t.Fatal(err)
} else if b == nil {
t.Fatal("expected bucket")
}
return nil
}); err != nil {
t.Fatal(err)
}
// Read the bucket through a separate transaction.
if err := db.View(func(tx *bolt.Tx) error {
if tx.Bucket([]byte("widgets")) == nil {
t.Fatal("expected bucket")
}
return nil
}); err != nil {
t.Fatal(err)
}
}
// Ensure transaction returns an error if creating an unnamed bucket.
func TestTx_CreateBucketIfNotExists_ErrBucketNameRequired(t *testing.T) {
db := MustOpenDB()
defer db.MustClose()
if err := db.Update(func(tx *bolt.Tx) error {
if _, err := tx.CreateBucketIfNotExists([]byte{}); err != bolt.ErrBucketNameRequired {
t.Fatalf("unexpected error: %s", err)
}
if _, err := tx.CreateBucketIfNotExists(nil); err != bolt.ErrBucketNameRequired {
t.Fatalf("unexpected error: %s", err)
}
return nil
}); err != nil {
t.Fatal(err)
}
}
// Ensure that a bucket cannot be created twice.
func TestTx_CreateBucket_ErrBucketExists(t *testing.T) {
db := MustOpenDB()
defer db.MustClose()
// Create a bucket.
if err := db.Update(func(tx *bolt.Tx) error {
if _, err := tx.CreateBucket([]byte("widgets")); err != nil {
t.Fatal(err)
}
return nil
}); err != nil {
t.Fatal(err)
}
// Create the same bucket again.
if err := db.Update(func(tx *bolt.Tx) error {
if _, err := tx.CreateBucket([]byte("widgets")); err != bolt.ErrBucketExists {
t.Fatalf("unexpected error: %s", err)
}
return nil
}); err != nil {
t.Fatal(err)
}
}
// Ensure that a bucket is created with a non-blank name.
func TestTx_CreateBucket_ErrBucketNameRequired(t *testing.T) {
db := MustOpenDB()
defer db.MustClose()
if err := db.Update(func(tx *bolt.Tx) error {
if _, err := tx.CreateBucket(nil); err != bolt.ErrBucketNameRequired {
t.Fatalf("unexpected error: %s", err)
}
return nil
}); err != nil {
t.Fatal(err)
}
}
// Ensure that a bucket can be deleted.
func TestTx_DeleteBucket(t *testing.T) {
db := MustOpenDB()
defer db.MustClose()
// Create a bucket and add a value.
if err := db.Update(func(tx *bolt.Tx) error {
b, err := tx.CreateBucket([]byte("widgets"))
if err != nil {
t.Fatal(err)
}
if err := b.Put([]byte("foo"), []byte("bar")); err != nil {
t.Fatal(err)
}
return nil
}); err != nil {
t.Fatal(err)
}
// Delete the bucket and make sure we can't get the value.
if err := db.Update(func(tx *bolt.Tx) error {
if err := tx.DeleteBucket([]byte("widgets")); err != nil {
t.Fatal(err)
}
if tx.Bucket([]byte("widgets")) != nil {
t.Fatal("unexpected bucket")
}
return nil
}); err != nil {
t.Fatal(err)
}
if err := db.Update(func(tx *bolt.Tx) error {
// Create the bucket again and make sure there's not a phantom value.
b, err := tx.CreateBucket([]byte("widgets"))
if err != nil {
t.Fatal(err)
}
if v := b.Get([]byte("foo")); v != nil {
t.Fatalf("unexpected phantom value: %v", v)
}
return nil
}); err != nil {
t.Fatal(err)
}
}
// Ensure that deleting a bucket on a closed transaction returns an error.
func TestTx_DeleteBucket_ErrTxClosed(t *testing.T) {
db := MustOpenDB()
defer db.MustClose()
tx, err := db.Begin(true)
if err != nil {
t.Fatal(err)
}
if err := tx.Commit(); err != nil {
t.Fatal(err)
}
if err := tx.DeleteBucket([]byte("foo")); err != bolt.ErrTxClosed {
t.Fatalf("unexpected error: %s", err)
}
}
// Ensure that deleting a bucket with a read-only transaction returns an error.
func TestTx_DeleteBucket_ReadOnly(t *testing.T) {
db := MustOpenDB()
defer db.MustClose()
if err := db.View(func(tx *bolt.Tx) error {
if err := tx.DeleteBucket([]byte("foo")); err != bolt.ErrTxNotWritable {
t.Fatalf("unexpected error: %s", err)
}
return nil
}); err != nil {
t.Fatal(err)
}
}
// Ensure that nothing happens when deleting a bucket that doesn't exist.
func TestTx_DeleteBucket_NotFound(t *testing.T) {
db := MustOpenDB()
defer db.MustClose()
if err := db.Update(func(tx *bolt.Tx) error {
if err := tx.DeleteBucket([]byte("widgets")); err != bolt.ErrBucketNotFound {
t.Fatalf("unexpected error: %s", err)
}
return nil
}); err != nil {
t.Fatal(err)
}
}
// Ensure that no error is returned when a tx.ForEach function does not return
// an error.
func TestTx_ForEach_NoError(t *testing.T) {
db := MustOpenDB()
defer db.MustClose()
if err := db.Update(func(tx *bolt.Tx) error {
b, err := tx.CreateBucket([]byte("widgets"))
if err != nil {
t.Fatal(err)
}
if err := b.Put([]byte("foo"), []byte("bar")); err != nil {
t.Fatal(err)
}
if err := tx.ForEach(func(name []byte, b *bolt.Bucket) error {
return nil
}); err != nil {
t.Fatal(err)
}
return nil
}); err != nil {
t.Fatal(err)
}
}
// Ensure that an error is returned when a tx.ForEach function returns an error.
func TestTx_ForEach_WithError(t *testing.T) {
db := MustOpenDB()
defer db.MustClose()
if err := db.Update(func(tx *bolt.Tx) error {
b, err := tx.CreateBucket([]byte("widgets"))
if err != nil {
t.Fatal(err)
}
if err := b.Put([]byte("foo"), []byte("bar")); err != nil {
t.Fatal(err)
}
marker := errors.New("marker")
if err := tx.ForEach(func(name []byte, b *bolt.Bucket) error {
return marker
}); err != marker {
t.Fatalf("unexpected error: %s", err)
}
return nil
}); err != nil {
t.Fatal(err)
}
}
// Ensure that Tx commit handlers are called after a transaction successfully commits.
func TestTx_OnCommit(t *testing.T) {
db := MustOpenDB()
defer db.MustClose()
var x int
if err := db.Update(func(tx *bolt.Tx) error {
tx.OnCommit(func() { x += 1 })
tx.OnCommit(func() { x += 2 })
if _, err := tx.CreateBucket([]byte("widgets")); err != nil {
t.Fatal(err)
}
return nil
}); err != nil {
t.Fatal(err)
} else if x != 3 {
t.Fatalf("unexpected x: %d", x)
}
}
// Ensure that Tx commit handlers are NOT called after a transaction rolls back.
func TestTx_OnCommit_Rollback(t *testing.T) {
db := MustOpenDB()
defer db.MustClose()
var x int
if err := db.Update(func(tx *bolt.Tx) error {
tx.OnCommit(func() { x += 1 })
tx.OnCommit(func() { x += 2 })
if _, err := tx.CreateBucket([]byte("widgets")); err != nil {
t.Fatal(err)
}
return errors.New("rollback this commit")
}); err == nil || err.Error() != "rollback this commit" {
t.Fatalf("unexpected error: %s", err)
} else if x != 0 {
t.Fatalf("unexpected x: %d", x)
}
}
// Ensure that the database can be copied to a file path.
func TestTx_CopyFile(t *testing.T) {
db := MustOpenDB()
defer db.MustClose()
path := tempfile()
if err := db.Update(func(tx *bolt.Tx) error {
b, err := tx.CreateBucket([]byte("widgets"))
if err != nil {
t.Fatal(err)
}
if err := b.Put([]byte("foo"), []byte("bar")); err != nil {
t.Fatal(err)
}
if err := b.Put([]byte("baz"), []byte("bat")); err != nil {
t.Fatal(err)
}
return nil
}); err != nil {
t.Fatal(err)
}
if err := db.View(func(tx *bolt.Tx) error {
return tx.CopyFile(path, 0600)
}); err != nil {
t.Fatal(err)
}
db2, err := bolt.Open(path, 0600, nil)
if err != nil {
t.Fatal(err)
}
if err := db2.View(func(tx *bolt.Tx) error {
if v := tx.Bucket([]byte("widgets")).Get([]byte("foo")); !bytes.Equal(v, []byte("bar")) {
t.Fatalf("unexpected value: %v", v)
}
if v := tx.Bucket([]byte("widgets")).Get([]byte("baz")); !bytes.Equal(v, []byte("bat")) {
t.Fatalf("unexpected value: %v", v)
}
return nil
}); err != nil {
t.Fatal(err)
}
if err := db2.Close(); err != nil {
t.Fatal(err)
}
}
type failWriterError struct{}
func (failWriterError) Error() string {
return "error injected for tests"
}
type failWriter struct {
// fail after this many bytes
After int
}
func (f *failWriter) Write(p []byte) (n int, err error) {
n = len(p)
if n > f.After {
n = f.After
err = failWriterError{}
}
f.After -= n
return n, err
}
// Ensure that Copy handles write errors right.
func TestTx_CopyFile_Error_Meta(t *testing.T) {
db := MustOpenDB()
defer db.MustClose()
if err := db.Update(func(tx *bolt.Tx) error {
b, err := tx.CreateBucket([]byte("widgets"))
if err != nil {
t.Fatal(err)
}
if err := b.Put([]byte("foo"), []byte("bar")); err != nil {
t.Fatal(err)
}
if err := b.Put([]byte("baz"), []byte("bat")); err != nil {
t.Fatal(err)
}
return nil
}); err != nil {
t.Fatal(err)
}
if err := db.View(func(tx *bolt.Tx) error {
return tx.Copy(&failWriter{})
}); err == nil || err.Error() != "meta 0 copy: error injected for tests" {
t.Fatalf("unexpected error: %v", err)
}
}
// Ensure that Copy handles write errors right.
func TestTx_CopyFile_Error_Normal(t *testing.T) {
db := MustOpenDB()
defer db.MustClose()
if err := db.Update(func(tx *bolt.Tx) error {
b, err := tx.CreateBucket([]byte("widgets"))
if err != nil {
t.Fatal(err)
}
if err := b.Put([]byte("foo"), []byte("bar")); err != nil {
t.Fatal(err)
}
if err := b.Put([]byte("baz"), []byte("bat")); err != nil {
t.Fatal(err)
}
return nil
}); err != nil {
t.Fatal(err)
}
if err := db.View(func(tx *bolt.Tx) error {
return tx.Copy(&failWriter{3 * db.Info().PageSize})
}); err == nil || err.Error() != "error injected for tests" {
t.Fatalf("unexpected error: %v", err)
}
}
// TestTx_releaseRange ensures db.freePages handles page releases
// correctly when there are transaction that are no longer reachable
// via any read/write transactions and are "between" ongoing read
// transactions, which requires they must be freed by
// freelist.releaseRange.
func TestTx_releaseRange(t *testing.T) {
// Set initial mmap size well beyond the limit we will hit in this
// test, since we are testing with long running read transactions
// and will deadlock if db.grow is triggered.
db := MustOpenWithOption(&bolt.Options{InitialMmapSize: os.Getpagesize() * 100})
defer db.MustClose()
bucket := "bucket"
put := func(key, value string) {
if err := db.Update(func(tx *bolt.Tx) error {
b, err := tx.CreateBucketIfNotExists([]byte(bucket))
if err != nil {
t.Fatal(err)
}
return b.Put([]byte(key), []byte(value))
}); err != nil {
t.Fatal(err)
}
}
del := func(key string) {
if err := db.Update(func(tx *bolt.Tx) error {
b, err := tx.CreateBucketIfNotExists([]byte(bucket))
if err != nil {
t.Fatal(err)
}
return b.Delete([]byte(key))
}); err != nil {
t.Fatal(err)
}
}
getWithTxn := func(txn *bolt.Tx, key string) []byte {
return txn.Bucket([]byte(bucket)).Get([]byte(key))
}
openReadTxn := func() *bolt.Tx {
readTx, err := db.Begin(false)
if err != nil {
t.Fatal(err)
}
return readTx
}
checkWithReadTxn := func(txn *bolt.Tx, key string, wantValue []byte) {
value := getWithTxn(txn, key)
if !bytes.Equal(value, wantValue) {
t.Errorf("Wanted value to be %s for key %s, but got %s", wantValue, key, string(value))
}
}
rollback := func(txn *bolt.Tx) {
if err := txn.Rollback(); err != nil {
t.Fatal(err)
}
}
put("k1", "v1")
rtx1 := openReadTxn()
put("k2", "v2")
hold1 := openReadTxn()
put("k3", "v3")
hold2 := openReadTxn()
del("k3")
rtx2 := openReadTxn()
del("k1")
hold3 := openReadTxn()
del("k2")
hold4 := openReadTxn()
put("k4", "v4")
hold5 := openReadTxn()
// Close the read transactions we established to hold a portion of the pages in pending state.
rollback(hold1)
rollback(hold2)
rollback(hold3)
rollback(hold4)
rollback(hold5)
// Execute a write transaction to trigger a releaseRange operation in the db
// that will free multiple ranges between the remaining open read transactions, now that the
// holds have been rolled back.
put("k4", "v4")
// Check that all long running reads still read correct values.
checkWithReadTxn(rtx1, "k1", []byte("v1"))
checkWithReadTxn(rtx2, "k2", []byte("v2"))
rollback(rtx1)
rollback(rtx2)
// Check that the final state is correct.
rtx7 := openReadTxn()
checkWithReadTxn(rtx7, "k1", nil)
checkWithReadTxn(rtx7, "k2", nil)
checkWithReadTxn(rtx7, "k3", nil)
checkWithReadTxn(rtx7, "k4", []byte("v4"))
rollback(rtx7)
}
func ExampleTx_Rollback() {
// Open the database.
db, err := bolt.Open(tempfile(), 0666, nil)
if err != nil {
log.Fatal(err)
}
defer os.Remove(db.Path())
// Create a bucket.
if err := db.Update(func(tx *bolt.Tx) error {
_, err := tx.CreateBucket([]byte("widgets"))
return err
}); err != nil {
log.Fatal(err)
}
// Set a value for a key.
if err := db.Update(func(tx *bolt.Tx) error {
return tx.Bucket([]byte("widgets")).Put([]byte("foo"), []byte("bar"))
}); err != nil {
log.Fatal(err)
}
// Update the key but rollback the transaction so it never saves.
tx, err := db.Begin(true)
if err != nil {
log.Fatal(err)
}
b := tx.Bucket([]byte("widgets"))
if err := b.Put([]byte("foo"), []byte("baz")); err != nil {
log.Fatal(err)
}
if err := tx.Rollback(); err != nil {
log.Fatal(err)
}
// Ensure that our original value is still set.
if err := db.View(func(tx *bolt.Tx) error {
value := tx.Bucket([]byte("widgets")).Get([]byte("foo"))
fmt.Printf("The value for 'foo' is still: %s\n", value)
return nil
}); err != nil {
log.Fatal(err)
}
// Close database to release file lock.
if err := db.Close(); err != nil {
log.Fatal(err)
}
// Output:
// The value for 'foo' is still: bar
}
func ExampleTx_CopyFile() {
// Open the database.
db, err := bolt.Open(tempfile(), 0666, nil)
if err != nil {
log.Fatal(err)
}
defer os.Remove(db.Path())
// Create a bucket and a key.
if err := db.Update(func(tx *bolt.Tx) error {
b, err := tx.CreateBucket([]byte("widgets"))
if err != nil {
return err
}
if err := b.Put([]byte("foo"), []byte("bar")); err != nil {
return err
}
return nil
}); err != nil {
log.Fatal(err)
}
// Copy the database to another file.
toFile := tempfile()
if err := db.View(func(tx *bolt.Tx) error {
return tx.CopyFile(toFile, 0666)
}); err != nil {
log.Fatal(err)
}
defer os.Remove(toFile)
// Open the cloned database.
db2, err := bolt.Open(toFile, 0666, nil)
if err != nil {
log.Fatal(err)
}
// Ensure that the key exists in the copy.
if err := db2.View(func(tx *bolt.Tx) error {
value := tx.Bucket([]byte("widgets")).Get([]byte("foo"))
fmt.Printf("The value for 'foo' in the clone is: %s\n", value)
return nil
}); err != nil {
log.Fatal(err)
}
// Close database to release file lock.
if err := db.Close(); err != nil {
log.Fatal(err)
}
if err := db2.Close(); err != nil {
log.Fatal(err)
}
// Output:
// The value for 'foo' in the clone is: bar
}

View File

@ -140,7 +140,3 @@ try_again:
return k, v, fmt.Errorf("unknown node type, corruption")
}
}

View File

@ -4,7 +4,6 @@ import "fmt"
import "math"
import "crypto/rand"
// Random returns a random key,value from the tree, provided a tree has keys
// the following are limitations
// a tree containing 0 key, value pairs will return err
@ -23,10 +22,10 @@ func (t *Tree) random(cnode node) (k, v []byte, err error) {
left, right := node.left, node.right
if left != nil && right != nil { // we have an option to choose from left or right randomly
var rbyte [1]byte
if _, err = rand.Read(rbyte[:]);err != nil {
if _, err = rand.Read(rbyte[:]); err != nil {
return
}
if rbyte[0] & 1 == 1 {
if rbyte[0]&1 == 1 {
return t.random(right) // descend further
}
return t.random(left) // descend further
@ -62,8 +61,8 @@ func (t *Tree) KeyCountEstimate() (count int64) {
var depth_array []int
var floatsum float64
for _, _, err := c.First(); err == nil ; _, _, err = c.Next() {
floatsum += float64( len(c.node_path))
for _, _, err := c.First(); err == nil; _, _, err = c.Next() {
floatsum += float64(len(c.node_path))
depth_array = append(depth_array, len(c.node_path))
if len(depth_array) >= 20 {
break
@ -73,5 +72,5 @@ func (t *Tree) KeyCountEstimate() (count int64) {
return int64(count)
}
avg := floatsum / float64(len(depth_array)+1)
return int64 ( math.Exp2(avg))
return int64(math.Exp2(avg))
}

View File

@ -6,10 +6,8 @@ import "os"
import "fmt"
import "bufio"
// this function will export the tree to a dor graph file to understand any issues
func (t *Tree) Graph(fname string) ( err error) {
func (t *Tree) Graph(fname string) (err error) {
f, err := os.Create(fname)
if err != nil {
@ -23,7 +21,7 @@ func (t *Tree) Graph(fname string) ( err error) {
w.WriteString("digraph graviton_graph { \n")
defer w.WriteString(" \n}\n")
t.graph(t.root,w)
t.graph(t.root, w)
return nil
}
func (t *Tree) graph(cnode node, w *bufio.Writer) {
@ -37,23 +35,22 @@ func (t *Tree) graph(cnode node, w *bufio.Writer) {
}
w.WriteString(fmt.Sprintf("node [ fontsize=12 style=filled ]\n{\n"))
hash,_ := node.Hash(t.store)
hash, _ := node.Hash(t.store)
w.WriteString(fmt.Sprintf("L%x [ fillcolor=%s label = \"L%x\" ];\n", hash, "red", hash))
w.WriteString(fmt.Sprintf("}\n"))
left, right := node.left, node.right
if right != nil {
rhash,_ := right.Hash(t.store)
rhash, _ := right.Hash(t.store)
w.WriteString(fmt.Sprintf("L%x -> L%x ;\n", hash, rhash))
t.graph(right,w) // descend further without any option
t.graph(right, w) // descend further without any option
}
if left != nil {
lhash,_ := left.Hash(t.store)
lhash, _ := left.Hash(t.store)
w.WriteString(fmt.Sprintf("L%x -> L%x ;\n", hash, lhash))
t.graph(left,w) // descend further without any option
t.graph(left, w) // descend further without any option
}
return
@ -64,9 +61,9 @@ func (t *Tree) graph(cnode node, w *bufio.Writer) {
}
}
w.WriteString(fmt.Sprintf("node [ fontsize=12 style=filled ]\n{\n"))
hash,_ := node.Hash(t.store)
hash, _ := node.Hash(t.store)
keyhash := sum(node.key)
w.WriteString(fmt.Sprintf("L%x [ fillcolor=%s label = \"L%x %x\" ];\n", hash, "green", hash ,keyhash))
w.WriteString(fmt.Sprintf("L%x [ fillcolor=%s label = \"L%x %x\" ];\n", hash, "green", hash, keyhash))
w.WriteString(fmt.Sprintf("}\n"))
//return node.key, node.value, nil
default:
@ -74,5 +71,3 @@ func (t *Tree) graph(cnode node, w *bufio.Writer) {
return
}
}

View File

@ -19,13 +19,12 @@ type Snapshot struct {
// note: 0th tree is not stored in disk
// also note that commits are being done so versions might be change
func (store *Store) LoadSnapshot(version uint64) (*Snapshot, error) {
if !store.version_data_loaded {
if err := store.loadsnapshottablestoram(); err != nil {
var err error
_, highest_version, findex, fpos, err := store.findhighestsnapshotinram() // only latest version can be reached from the table
if err != nil {
return nil, err
}
}
_, highest_version, findex, fpos := store.findhighestsnapshotinram() // only latest version can be reached from the table
if version > highest_version {
return nil, fmt.Errorf("Database highest version: %d you requested %d.Not Possible!!", highest_version, version)
}
@ -38,30 +37,18 @@ func (store *Store) LoadSnapshot(version uint64) (*Snapshot, error) {
return nil, err
} else {
return &Snapshot{store: store, version: highest_version, findex: uint32(findex), fpos: uint32(fpos), vroot: vroot}, nil
}
}
}
// user requested an arbitrary version between 1 and highest_version -1
_, hvroot, err := store.loadrootusingpos(findex, fpos) // load highest version root tree
if err != nil {
if findex, fpos, err = store.ReadVersionData(version); err != nil {
return nil, err
}
var key = [512]byte{':', ':'} // now use it to locate specific version tree
done := 2
done += binary.PutUvarint(key[done:], version)
eposition, err := hvroot.Get(store, sum(key[:done]))
if err != nil {
return nil, err
}
findex, fpos = decode(eposition)
_, vroot, err := store.loadrootusingpos(findex, fpos)
if err != nil {
return nil, err
}
return &Snapshot{store: store, version: version, findex: findex, fpos: fpos, vroot: vroot}, nil
}
@ -91,7 +78,7 @@ func (s *Snapshot) loadTree(key []byte) (tree *Tree, err error) {
if position, err = s.vroot.Get(s.store, sum(key)); err == nil { // underscore is first character
if bname, root, err = s.store.loadrootusingpos(decode(position)); err == nil {
tree = &Tree{store: s.store, root: root, treename: bname}
tree = &Tree{store: s.store, root: root, treename: bname, snapshot_version: s.version}
tree.Hash()
}
}
@ -99,20 +86,6 @@ func (s *Snapshot) loadTree(key []byte) (tree *Tree, err error) {
return tree, err
}
func (store *Store) findhighestsnapshotinram() (index int, version uint64, findex, fpos uint32) {
var highest_version uint64
for i := 0; i < internal_MAX_VERSIONS_TO_KEEP; i++ {
if highest_version < binary.LittleEndian.Uint64(store.version_data[i*internal_VERSION_RECORD_SIZE:]) {
index = i
version = binary.LittleEndian.Uint64(store.version_data[i*internal_VERSION_RECORD_SIZE:])
findex = uint32(binary.LittleEndian.Uint64(store.version_data[i*internal_VERSION_RECORD_SIZE+8:]))
fpos = uint32(binary.LittleEndian.Uint64(store.version_data[i*internal_VERSION_RECORD_SIZE+16:]))
highest_version = version
}
}
return
}
// Load a versioned tree from the store all trees have there own version number
func (s *Snapshot) GetTreeWithVersion(treename string, version uint64) (*Tree, error) {
var buf = [512]byte{':'}
@ -122,7 +95,7 @@ func (s *Snapshot) GetTreeWithVersion(treename string, version uint64) (*Tree, e
}
if version == 0 {
return &Tree{root: newInner(0), treename: treename, store: s.store}, nil
return &Tree{root: newInner(0), treename: treename, store: s.store, snapshot_version: s.version}, nil
}
done := 1

View File

@ -1,8 +1,9 @@
package graviton
import (
"io/ioutil"
"os"
"fmt"
// "io/ioutil"
// "os"
"testing"
"time"
@ -11,6 +12,82 @@ import (
var dddd_ = time.Now()
// this tests the version tree dag
// this loading of versions and whether they can be accessed and then moved forward
func TestSnapshotDAG(t *testing.T) {
store, err := NewMemStore()
require.NoError(t, err)
loop_count := uint64(5)
// now lets commit the tree 5 times
for i := uint64(0); i < loop_count; i++ {
gv, err := store.LoadSnapshot(0)
require.NoError(t, err)
tree, err := gv.GetTree("root")
require.NoError(t, err)
require.Equal(t, i, tree.snapshot_version)
key := []byte(fmt.Sprintf("%d", i+1))
value := []byte(fmt.Sprintf("%d", i+1))
require.NoError(t, tree.Put(key, value))
commit_version, err := Commit(tree)
require.NoError(t, err)
require.Equal(t, i+1, commit_version)
require.Equal(t, i+1, tree.snapshot_version)
require.Equal(t, i+1, tree.GetVersion())
}
for i := uint64(0); i < loop_count; i++ {
gv, err := store.LoadSnapshot(i + 1)
require.NoError(t, err)
tree, err := gv.GetTree("root")
require.NoError(t, err)
for j := uint64(0); j < i; j++ {
key := []byte(fmt.Sprintf("%d", j+1))
value := []byte(fmt.Sprintf("%d", j+1))
value_actual, err := tree.Get(key)
if err != nil {
fmt.Printf("value result failed j %d\n", j)
}
require.NoError(t, err)
require.Equal(t, value, value_actual)
}
}
gv, err := store.LoadSnapshot(5)
require.NoError(t, err)
highest_version, err := gv.GetTreeHighestVersion("root")
require.NoError(t, err)
require.Equal(t, uint64(5), highest_version)
// now lets test we can move past in history
gv, err = store.LoadSnapshot(3)
require.NoError(t, err)
tree, err := gv.GetTree("root")
require.NoError(t, err)
key := []byte(fmt.Sprintf("%d", 4))
value := []byte(fmt.Sprintf("%d", 4))
require.NoError(t, tree.Put(key, value))
commit_version, err := Commit(tree)
require.NoError(t, err)
require.Equal(t, uint64(6), commit_version) // 5 version committed earlier
require.Equal(t, uint64(6), tree.snapshot_version)
require.Equal(t, uint64(4), tree.GetVersion()) // tree version should be 4
}
// this tests various treename entry points
func TestTreeNameLimit(t *testing.T) {
@ -85,13 +162,34 @@ func TestLoadSnapshot(t *testing.T) {
_, err = store.LoadSnapshot(99) // trigger version is higher than available error
require.Error(t, err)
// now lets commit the tree 5 times
loop_count := uint64(5)
for i := uint64(0); i < loop_count; i++ {
gv, err := store.LoadSnapshot(0)
require.NoError(t, err)
tree, err := gv.GetTree("root")
require.NoError(t, err)
require.Equal(t, i, tree.snapshot_version)
key := []byte(fmt.Sprintf("%d", i+1))
value := []byte(fmt.Sprintf("%d", i+1))
require.NoError(t, tree.Put(key, value))
_, err = Commit(tree)
require.NoError(t, err)
}
//fmt.Printf("error %s\n", store.loadsnapshottablestoram())
store.version_data[0] = 1
store.version_data[16] = 1
store.versionrootfile.memoryfile[(loop_count-1)*8+7] = 1 // corrupt last entry
store.versionrootfile.memoryfile[(loop_count-2)*8+7] = 1 // corrupt second last entry
_, err = store.LoadSnapshot(1) // trigger recent version corruption
_, err = store.LoadSnapshot(0) // trigger recent version corruption
require.Error(t, err)
_, err = store.LoadSnapshot(4) // trigger second last version corruption
require.Error(t, err)
/*
store.version_data[24] = 2
store.version_data[24+16] = 1
_, err = store.LoadSnapshot(1) // trigger recent version corruption
@ -100,6 +198,7 @@ func TestLoadSnapshot(t *testing.T) {
_, _, err = store.write([]byte{3, 0, 0, 0}) // write empty inner record
_, err = store.LoadSnapshot(1) // trigger recent version corruption
require.Error(t, err)
*/
// create a complex error, where deep error is created using internal structures
store, err = NewMemStore()
@ -118,54 +217,4 @@ func TestLoadSnapshot(t *testing.T) {
gv, err = store.LoadSnapshot(0)
require.NoError(t, err)
eposition, err := gv.vroot.Get(store, sum([]byte{':', ':', 1}))
require.NoError(t, err)
_, fpos := decode(eposition)
// lets overwrite the file with with corrupt inner node
file := store.files[0]
//file.fileh.WriteAt([]byte{3, 5, 99, 0}, int64(fpos))
copy(file.memoryfile[fpos:], []byte{3, 5, 99, 0})
_, err = store.LoadSnapshot(1) // trigger recent version corruption
require.Error(t, err)
}
func TestIloadSnapshottablestoram(t *testing.T) {
//store, err := NewMemStore()
dir, err := ioutil.TempDir("", "example")
require.NoError(t, err)
defer os.RemoveAll(dir) // clean up
store, err := NewDiskStore(dir) // make file handles unlimited
require.NoError(t, err)
gv, err := store.LoadSnapshot(0)
require.NoError(t, err)
store.Close()
store.version_data_loaded = false
gv, err = store.LoadSnapshot(1)
require.Error(t, err) // this root does not exist
// second error
dir2, err := ioutil.TempDir("", "example")
require.NoError(t, err)
defer os.RemoveAll(dir2) // clean up
store, err = NewDiskStore(dir2) // make file handles unlimited
require.NoError(t, err)
gv, err = store.LoadSnapshot(0)
require.NoError(t, err)
tree, err := gv.GetTree("root")
require.NoError(t, err)
tree.Put([]byte{byte(0)}, []byte{byte(0)})
require.NoError(t, tree.Commit())
tree.Put([]byte{byte(1)}, []byte{byte(1)})
require.NoError(t, tree.Commit())
store.versionrootfile.diskfile.Truncate(510)
store.version_data_loaded = false
gv, err = store.LoadSnapshot(1)
require.Error(t, err) // this root does not exist
}

View File

@ -5,54 +5,58 @@ package graviton
import "golang.org/x/xerrors"
// we only have a keyhash and need to get both the key,value
func (t *Tree) GetKeyValue(keyhash [HASHSIZE]byte) (int,[]byte,[]byte, error) {
return t.root.GetKeyValue(t.store, keyhash,256,0 )
func (t *Tree) GetKeyValue(keyhash [HASHSIZE]byte) (int, []byte, []byte, error) {
return t.root.GetKeyValue(t.store, keyhash, 256, 0)
}
func (in *inner) GetKeyValue(store *Store, keyhash [HASHSIZE]byte, valid_bit_count,used_bit_count int) (int,[]byte,[]byte, error) {
func (in *inner) GetKeyValue(store *Store, keyhash [HASHSIZE]byte, valid_bit_count, used_bit_count int) (int, []byte, []byte, error) {
if err := in.load_partial(store); err != nil { // if inner node is loaded partially, load it fully now
return used_bit_count,nil,nil, err
return used_bit_count, nil, nil, err
}
if used_bit_count > valid_bit_count || valid_bit_count <= 0 {
return used_bit_count,nil,nil, xerrors.Errorf("%w: right dead end at %d. keyhash %x", ErrNotFound, in.bit, keyhash)
return used_bit_count, nil, nil, xerrors.Errorf("%w: right dead end at %d. keyhash %x", ErrNotFound, in.bit, keyhash)
}
if isBitSet(keyhash[:], uint(in.bit)) {
if in.right == nil {
return used_bit_count,nil,nil, xerrors.Errorf("%w: right dead end at %d. keyhash %x", ErrNotFound, in.bit, keyhash)
return used_bit_count, nil, nil, xerrors.Errorf("%w: right dead end at %d. keyhash %x", ErrNotFound, in.bit, keyhash)
}
switch in.right.(type) { // draw left branch
case *inner: return in.right.(*inner).GetKeyValue(store, keyhash,valid_bit_count,used_bit_count+1)
case *leaf: return in.right.(*leaf).GetKeyValue(store, keyhash,valid_bit_count,used_bit_count+1)
default: panic("unknown node type")
case *inner:
return in.right.(*inner).GetKeyValue(store, keyhash, valid_bit_count, used_bit_count+1)
case *leaf:
return in.right.(*leaf).GetKeyValue(store, keyhash, valid_bit_count, used_bit_count+1)
default:
panic("unknown node type")
}
}
if in.left == nil {
return used_bit_count,nil,nil, xerrors.Errorf("%w: left dead end at %d. keyhash %x", ErrNotFound, in.bit, keyhash)
return used_bit_count, nil, nil, xerrors.Errorf("%w: left dead end at %d. keyhash %x", ErrNotFound, in.bit, keyhash)
}
switch in.left.(type) { // draw left branch
case *inner: return in.left.(*inner).GetKeyValue(store, keyhash,valid_bit_count,used_bit_count+1)
case *leaf: return in.left.(*leaf).GetKeyValue(store, keyhash,valid_bit_count,used_bit_count+1)
default: panic("unknown node type")
case *inner:
return in.left.(*inner).GetKeyValue(store, keyhash, valid_bit_count, used_bit_count+1)
case *leaf:
return in.left.(*leaf).GetKeyValue(store, keyhash, valid_bit_count, used_bit_count+1)
default:
panic("unknown node type")
}
}
// should we return a copy
func (l *leaf) GetKeyValue(store *Store, keyhash [HASHSIZE]byte,valid_bit_count,used_bit_count int) (int,[]byte, []byte, error) {
func (l *leaf) GetKeyValue(store *Store, keyhash [HASHSIZE]byte, valid_bit_count, used_bit_count int) (int, []byte, []byte, error) {
if l.loaded_partial { // if leaf is loaded partially, load it fully now
if err := l.loadfullleaffromstore(store); err != nil {
return used_bit_count,nil,nil, err
return used_bit_count, nil, nil, err
}
}
if l.keyhash == keyhash {
return used_bit_count,l.key,l.value, nil
return used_bit_count, l.key, l.value, nil
}
return used_bit_count,nil,nil, xerrors.Errorf("%w: collision, keyhash %x not found", ErrNotFound, keyhash)
return used_bit_count, nil, nil, xerrors.Errorf("%w: collision, keyhash %x not found", ErrNotFound, keyhash)
}

View File

@ -38,11 +38,7 @@ type Store struct {
files map[uint32]*file
findex uint32
versionrootfile *file // only maintains recent version records
version_index int // version index to rotate inside version data
version_data [512]byte // stores version data pointers, 20 * 24 , each record is 24 bytes
version_data_loaded bool // whether the version data loaded
versionrootfile *file // only maintains recent version records, each version is 8 bytes and stores the file index and fpos
//internal_value_root *inner // internal append only value root
commitsync sync.RWMutex // used to sync altroots value root, versioned root
@ -270,72 +266,84 @@ func (s *Store) read(findex, fpos uint32, buf []byte) (int, error) {
}
// versions are 1 based
func (s *Store) writeVersionData(version uint64, findex, fpos uint32) error {
var buf [512]byte
s.discsync.Lock()
defer s.discsync.Unlock()
copy(buf[:], s.version_data[:])
index := (s.version_index + 1) % internal_MAX_VERSIONS_TO_KEEP
binary.LittleEndian.PutUint64(buf[index*internal_VERSION_RECORD_SIZE+0:], version)
binary.LittleEndian.PutUint64(buf[index*internal_VERSION_RECORD_SIZE+8:], uint64(findex))
binary.LittleEndian.PutUint64(buf[index*internal_VERSION_RECORD_SIZE+16:], uint64(fpos))
binary.LittleEndian.PutUint32(buf[0:], findex)
binary.LittleEndian.PutUint32(buf[4:], fpos)
version--
if s.storage_layer == disk {
if _, err := s.versionrootfile.diskfile.WriteAt(buf[:], 0); err != nil {
if _, err := s.versionrootfile.diskfile.WriteAt(buf[:8], int64(version*8)); err != nil {
return err
}
} else if s.storage_layer == memory {
s.versionrootfile.memoryfile = append(s.versionrootfile.memoryfile[:0], buf[:]...)
if uint64(len(s.versionrootfile.memoryfile)) <= (version+1)*8 {
s.versionrootfile.memoryfile = append(s.versionrootfile.memoryfile, []byte{0, 0, 0, 0, 0, 0, 0, 0}...)
}
copy(s.versionrootfile.memoryfile[version*8:], buf[:8])
} else {
return fmt.Errorf("unknown storage layer")
}
copy(s.version_data[:], buf[:])
s.version_index = index
return nil
}
// load recent snapshot list to ram
func (s *Store) loadsnapshottablestoram() (err error) {
// versions are 1 based
func (s *Store) ReadVersionData(version uint64) (findex uint32, fpos uint32, err error) {
var buf [512]byte
s.discsync.Lock()
defer s.discsync.Unlock()
version--
if s.storage_layer == disk {
if finfo, err := s.versionrootfile.diskfile.Stat(); err == nil { // if newly created file, it return 0
if finfo.Size() == 0 {
copy(s.version_data[:], buf[:])
s.version_data_loaded = true
return nil
if _, err := s.versionrootfile.diskfile.ReadAt(buf[:8], int64(version*8)); err != nil {
return 0, 0, err
} else {
findex = binary.LittleEndian.Uint32(buf[0:])
fpos = binary.LittleEndian.Uint32(buf[4:])
}
} else if s.storage_layer == memory {
if uint64(len(s.versionrootfile.memoryfile)) <= (version)*8 {
return 0, 0, fmt.Errorf("invalid version %d %d", version, len(s.versionrootfile.memoryfile))
} else {
findex = binary.LittleEndian.Uint32(s.versionrootfile.memoryfile[version*8+0:])
fpos = binary.LittleEndian.Uint32(s.versionrootfile.memoryfile[version*8+4:])
}
} else {
return err
return 0, 0, fmt.Errorf("unknown storage layer")
}
} else if s.storage_layer == memory {
if len(s.versionrootfile.memoryfile) == 0 {
copy(s.version_data[:], buf[:])
s.version_data_loaded = true
return nil
}
} else {
return fmt.Errorf("unknown storage layer")
}
var bytes_count int
if s.storage_layer == disk {
bytes_count, err = s.versionrootfile.diskfile.ReadAt(buf[:], 0)
} else if s.storage_layer == memory {
bytes_count = copy(buf[:], s.versionrootfile.memoryfile)
}
if bytes_count == 512 {
copy(s.version_data[:], buf[:])
s.version_data_loaded = true
s.version_index, _, _, _ = s.findhighestsnapshotinram() // setup index properly
return nil
}
return err
return
}
func (s *Store) findhighestsnapshotinram() (index int, version uint64, findex, fpos uint32, err error) {
if s.storage_layer == disk {
var fstat os.FileInfo
if fstat, err = s.versionrootfile.diskfile.Stat(); err != nil {
return
}
if version = uint64(fstat.Size() / 8); version == 0 {
return
}
findex, fpos, err = s.ReadVersionData(version)
} else if s.storage_layer == memory {
version = uint64(len(s.versionrootfile.memoryfile) / 8)
if version == 0 {
return
}
findex, fpos, err = s.ReadVersionData(version)
} else {
err = fmt.Errorf("unknown storage layer")
}
return
}

View File

@ -317,20 +317,33 @@ func TestPersistantStore_Empty(t *testing.T) {
emptystore.storage_layer = unknown_layer
require.Error(t, emptystore.loadfiles()) // files cannot be loaded from unknown layer
require.Error(t, emptystore.loadsnapshottablestoram()) // snapshot table cannot eb loaded from unknown layer
emptystore.storage_layer = memory
emptystore.versionrootfile = &file{memoryfile: make([]byte, 512, 512)}
require.NoError(t, emptystore.loadsnapshottablestoram())
emptystore.storage_layer = unknown_layer
require.Error(t, emptystore.writeVersionData(0, 0, 0)) // unknown cannot write version data
_, err := emptystore.LoadSnapshot(0) // unknown storage layer cannot give verions
require.Error(t, err)
//emptystore.storage_layer = memory
//emptystore.versionrootfile = &file{}
//require.Error(t,emptystore.writeVersionData(0,0,0)) // unknown cannot write version data
_, _, err = emptystore.ReadVersionData(99) // unknown cannot read version data
require.Error(t, err)
{
store, err := NewMemStore()
_, _, err = store.ReadVersionData(99) // cannot read future version from memory
require.Error(t, err)
}
{
dir, err := ioutil.TempDir("", "example99")
require.NoError(t, err)
defer os.RemoveAll(dir) // clean up
store, err := NewDiskStore(dir)
_, _, err = store.ReadVersionData(99) // cannot read future version from memory
require.Error(t, err)
}
emptystore.storage_layer = unknown_layer
_, err := emptystore.read(0, 0, nil)
_, err = emptystore.read(0, 0, nil)
require.Error(t, err) // unknown cannot read data
store, err := NewMemStore()

View File

@ -21,6 +21,8 @@ type Tree struct {
size int
Tags []string // tags used while commit, will get cleaned after commit
snapshot_version uint64 // used to track which snapshot version this tree has loaded from
tmp_buffer bytes.Buffer
}
@ -109,37 +111,34 @@ func Commit(trees ...*Tree) (committed_version uint64, err error) {
trees[0].store.commitsync.Lock()
defer trees[0].store.commitsync.Unlock()
gv, err := trees[0].store.LoadSnapshot(0)
// sanity checkthat all trees were derived from the same snapshot
first_tree_snapshot_version := trees[0].snapshot_version
for i := range trees {
if first_tree_snapshot_version != trees[i].snapshot_version {
return 0, fmt.Errorf("all trees simultaneously committed must be derived from the same snapshot")
}
}
gv, err := trees[0].store.LoadSnapshot(first_tree_snapshot_version)
if err != nil {
return
}
for _, tree := range trees {
for _, tree := range trees { // commit all the trees with reference to same snapshot
if err = gv.commit(tree); err != nil {
return
}
}
// version should be committed only if it has changed
// this block of code writes reverse version pointers
_, highest_version, findex, fpos := trees[0].store.findhighestsnapshotinram()
var valuearray [HASHSIZE]byte
var key [512]byte
key[0] = ':'
key[1] = ':'
done := 2
done += binary.PutUvarint(key[done:], highest_version)
valuesize := encode(findex, fpos, valuearray[:]) //store link of previous version root to previous version findex,fpos
if err = gv.vroot.Insert(gv.store, newLeaf(sum([]byte(key[:done])), []byte(key[:done]), valuearray[:valuesize])); err == nil {
if findex, fpos, err = trees[0].commit_inner(gv, true, 0, gv.vroot); err == nil { // we must discard any version changes
var findex, fpos uint32
if findex, fpos, err = trees[0].commit_inner(gv, true, 0, gv.vroot); err == nil { // version number increments here
if err = trees[0].store.writeVersionData(gv.vroot.version_current, findex, fpos); err == nil {
committed_version = gv.vroot.version_current
for i := range trees {
trees[i].snapshot_version = committed_version // increment version
}
}
}
//fmt.Printf("committing version tree %x\n", gv.vroot.Hash(gv.store))
// this is we are cleaning up the trees, should we report bak any error , why should this code be here
@ -323,7 +322,8 @@ func (t *Tree) commit_inner(gv *Snapshot, specialversion bool, level int, in *in
if specialversion { // this is for the version root
// lets increment the version number and put it again
_, in.version_current, _, _ = t.store.findhighestsnapshotinram() // setup index properly
_, in.version_current, _, _, _ = t.store.findhighestsnapshotinram() // setup index properly
in.version_current++
in.version_previous = old_version

View File

@ -230,8 +230,7 @@ func TestDiscard(t *testing.T) {
tree.Put([]byte{46}, []byte{89}) // tree is dirty now
require.Equal(t, true, tree.IsDirty())
store.versionrootfile.diskfile.Truncate(510)
store.version_data_loaded = false
store.versionrootfile.diskfile.Truncate(0)
require.Error(t, tree.Discard())
}
@ -281,11 +280,11 @@ func TestCommits(t *testing.T) {
require.NoError(t, tree.Commit())
//create err
store.versionrootfile.diskfile.Truncate(510) // version file has been damaged
store.version_data_loaded = false
//store.versionrootfile.diskfile.Truncate(510) // version file has been damaged
//store.version_data_loaded = false
tree.Put([]byte{45}, []byte{80})
require.Error(t, tree.Commit())
//tree.Put([]byte{45}, []byte{80})
//require.Error(t, tree.Commit())
}
@ -312,11 +311,11 @@ func TestCommits_rarecase(t *testing.T) {
//tree.Put([]byte{45}, []byte{80})
//create err
store.versionrootfile.diskfile.Truncate(510) // version file has been damaged
store.version_data_loaded = false
//store.versionrootfile.diskfile.Truncate(510) // version file has been damaged
//store.version_data_loaded = false
_, _, err = tree.commit_inner(gv, false, 0, tree.root)
require.Error(t, err)
//_, _, err = tree.commit_inner(gv, false, 0, tree.root)
//require.Error(t, err)
// this is to test a condition which will probably never occur until disk is corrupted
@ -486,3 +485,50 @@ func TestCommitinner(t *testing.T) {
_, _, err = tree.commit_inner(gv, false, 0, tree.root)
require.Error(t, err)
}
func TestMultiCommits(t *testing.T) {
store, err := NewMemStore()
//store, err := NewDiskStore("/tmp/test") // make file handles are unlimited
require.NoError(t, err)
gv0, err := store.LoadSnapshot(0)
require.NoError(t, err)
tree1, err := gv0.GetTree("root1")
require.NoError(t, err)
tree2, err := gv0.GetTree("root2")
require.NoError(t, err)
tree1.Put([]byte{byte(1)}, []byte{byte(1)})
tree2.Put([]byte{byte(2)}, []byte{byte(2)})
_, err = Commit(tree1, tree2) // commit both trees
require.NoError(t, err)
tree1.Put([]byte{byte(1)}, []byte{byte(1)})
tree2.Put([]byte{byte(2)}, []byte{byte(2)})
_, err = Commit(tree1, tree2) // commit both trees
require.NoError(t, err)
// now lets load the same tree from different snapshots
gv1, err := store.LoadSnapshot(1)
require.NoError(t, err)
gv2, err := store.LoadSnapshot(2)
require.NoError(t, err)
tree1, err = gv1.GetTree("root1")
require.NoError(t, err)
tree2, err = gv2.GetTree("root2")
require.NoError(t, err)
tree1.Put([]byte{byte(1)}, []byte{byte(1)})
tree2.Put([]byte{byte(2)}, []byte{byte(2)})
_, err = Commit(tree1, tree2) // commit both trees but an error since both trees are from different snapshot
require.Error(t, err)
tree1.snapshot_version = 3 // non existant version
err = tree1.Commit()
require.Error(t, err)
}

View File

@ -1,28 +0,0 @@
# Compiled Object files
*.slo
*.lo
*.o
*.obj
# Precompiled Headers
*.gch
*.pch
# Compiled Dynamic libraries
*.so
*.dylib
*.dll
# Fortran module files
*.mod
# Compiled Static libraries
*.lai
*.la
*.a
*.lib
# Executables
*.exe
*.out
*.app

View File

@ -1,28 +0,0 @@
Copyright (c) 2015, Intel Corporation
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
* Neither the name of Intel Corporation nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

View File

@ -1,244 +0,0 @@
# cpuid
### Intel CPUID library for Go Programming Language
The cpuid package provides convenient and fast access to information from
the x86 CPUID instruction.
The package gathers all information during package initialization phase
so its public interface will not need to execute the CPUID instruction at runtime.
Frequent calls to the CPUID instruction can hurt performance,
so this package makes it easier to do CPU-specific optimizations.
[![GoDoc](https://godoc.org/github.com/intel-go/cpuid?status.svg)](https://godoc.org/github.com/intel-go/cpuid)
### You can get it with
```shell
go get github.com/intel-go/cpuid
```
### Example:
```go
package main
import (
"github.com/intel-go/cpuid"
"fmt"
)
func main() {
fmt.Printf("VendorString: %s\n", cpuid.VendorIdentificatorString)
fmt.Printf("Features: ")
for i := uint64(0); i < 64; i++ {
if cpuid.HasFeature(1 << i) {
fmt.Printf("%s ", cpuid.FeatureNames[1<<i])
}
}
fmt.Printf("\n")
fmt.Printf("ExtendedFeatures: ")
for i := uint64(0); i < 64; i++ {
if cpuid.HasExtendedFeature(1 << i) {
fmt.Printf("%s ", cpuid.ExtendedFeatureNames[1<<i])
}
}
fmt.Printf("\n")
fmt.Printf("ExtraFeatures: ")
for i := uint64(0); i < 64; i++ {
if cpuid.HasExtraFeature(1 << i) {
fmt.Printf("%s ", cpuid.ExtraFeatureNames[1<<i])
}
}
fmt.Printf("\n")
}
```
### API description
Most data is available with simple variables:
* **SteppingId uint32** Processor Stepping ID
* **ProcessorType uint32** Processor type
* **DisplayFamily uint32** Processor family
* **DisplayModel uint32** Processor model
* **CacheLineSize uint32** Cache line size in bytes
* **MaxLogocalCPUId uint32** Maximum number of addressable IDs for logical processors in this physical package
* **InitialAPICId uint32** Initial APIC ID
* **CacheDescriptors []CacheDescriptor** Cache descriptor's array
You can iterate over them as follows:
```go
for _, cacheDescription := range cpuid.CacheDescriptors {
fmt.Printf("CacheDescriptor: %v\n", cacheDescription)
}
```
* **MonLineSizeMin uint32** Smallest monitor-line size in bytes (default is processor's monitor granularity)
* **MonLineSizeMax uint32** Largest monitor-line size in bytes (default is processor's monitor granularity)
* **MonitorEMX bool** Enumeration of Monitor-Mwait extensions availability status
* **MonitorIBE bool** Supports treating interrupts as break-event for MWAIT flag
* **EnabledAVX bool** EnabledAVX flag allows to check if feature AVX is enabled by OS/BIOS
* **EnabledAVX512 bool** EnabledAVX512 flag allows to check if features AVX512xxx are enabled by OS/BIOS
* **func HasFeature(feature uint64) bool** to check for the following features:
> **SSE3** Prescott New Instructions-SSE3 (PNI) <br/>
> **PCLMULQDQ** PCLMULQDQ support <br/>
> **DTES64** 64-bit debug store (edx bit 21) <br/>
> **MONITOR** MONITOR and MWAIT instructions (SSE3) <br/>
> **DSI_CPL** CPL qualified debug store <br/>
> **VMX** Virtual Machine eXtensions <br/>
> **SMX** Safer Mode Extensions (LaGrande) <br/>
> **EST** Enhanced SpeedStep <br/>
> **TM2** Thermal Monitor 2 <br/>
> **SSSE3** Supplemental SSE3 instructions <br/>
> **CNXT_ID** L1 Context ID <br/>
> **SDBG** Silicon Debug interface <br/>
> **FMA** Fused multiply-add (FMA3) <br/>
> **CX16** CMPXCHG16B instruction <br/>
> **XTPR** Can disable sending task priority messages <br/>
> **PDCM** Perfmon & debug capability <br/>
> **PCID** Process context identifiers (CR4 bit 17) <br/>
> **DCA** Direct cache access for DMA writes[10][11] <br/>
> **SSE4_1** SSE4.1 instructions <br/>
> **SSE4_2** SSE4.2 instructions <br/>
> **X2APIC** x2APIC support <br/>
> **MOVBE** MOVBE instruction (big-endian) <br/>
> **POPCNT** POPCNT instruction <br/>
> **TSC_DEADLINE** line APIC supports one-shot operation using a TSC deadline value <br/>
> **AES** AES instruction set <br/>
> **XSAVE** XSAVE, XRESTOR, XSETBV, XGETBV <BR/>
> **OSXSAVE** XSAVE enabled by OS <br/>
> **AVX** Advanced Vector Extensions <br/>
> **F16C** F16C (half-precision) FP support <br/>
> **RDRND** RDRAND (on-chip random number generator) support <br/>
> **HYPERVISOR** Running on a hypervisor (always 0 on a real CPU, but also with some hypervisors) <br/>
> **FPU** Onboard x87 FPU <br/>
> **VME** Virtual 8086 mode extensions (such as VIF, VIP, PIV) <br/>
> **DE** Debugging extensions (CR4 bit 3) <br/>
> **PSE** Page Size Extension <br/>
> **TSC** Time Stamp Counter <br/>
> **MSR** Model-specific registers <br/>
> **PAE** Physical Address Extension <br/>
> **MCE** Machine Check Exception <br/>
> **CX8** CMPXCHG8 (compare-and-swap) instruction <br/>
> **APIC** Onboard Advanced Programmable Interrupt Controller <br/>
> **SEP** SYSENTER and SYSEXIT instructions <br/>
> **MTRR** Memory Type Range Registers <br/>
> **PGE** Page Global Enable bit in CR4 <br/>
> **MCA** Machine check architecture <br/>
> **CMOV** Conditional move and FCMOV instructions <br/>
> **PAT** Page Attribute Table <br/>
> **PSE_36** 36-bit page size extension <br/>
> **PSN** Processor Serial Number <br/>
> **CLFSH** CLFLUSH instruction (SSE2) <br/>
> **DS** Debug store: save trace of executed jumps <br/>
> **ACPI** Onboard thermal control MSRs for ACPI <br/>
> **MMX** MMX instructions <br/>
> **FXSR** FXSAVE, FXRESTOR instructions, CR4 bit 9 <br/>
> **SSE** SSE instructions (a.k.a. Katmai New Instructions) <br/>
> **SSE2** SSE2 instructions <br/>
> **SS** CPU cache supports self-snoop <br/>
> **HTT** Hyper-threading <br/>
> **TM** Thermal monitor automatically limits temperature <br/>
> **IA64** IA64 processor emulating x86 <br/>
> **PBE** Pending Break Enable (PBE# pin) wakeup support <br/>
Usage example:
```go
if EnabledAVX && HasFeature(AVX) {
fmt.Printf("We can use AVX\n")
}
```
* **func HasExtendedFeature(feature uint64) bool** to check for the following features:
> **FSGSBASE** Access to base of %fs and %gs<br/>
> **IA32_TSC_ADJUST** IA32_TSC_ADJUST MSR is supported if 1<br/>
> **BMI1** Bit Manipulation Instruction Set 1<br/>
> **HLE** Transactional Synchronization Extensions<br/>
> **AVX2** Advanced Vector Extensions 2<br/>
> **SMEP** Supervisor-Mode Execution Prevention<br/>
> **BMI2** Bit Manipulation Instruction Set 2<br/>
> **ERMS** Enhanced REP MOVSB/STOSB<br/>
> **INVPCID** INVPCID instruction<br/>
> **RTM** Transactional Synchronization Extensions<br/>
> **PQM** Supports Platform Quality of Service Monitoring (PQM) capability if 1<br/>
> **DFPUCDS** Deprecates FPU CS and FPU DS values if 1<br/>
> **MPX** Intel MPX (Memory Protection Extensions)<br/>
> **PQE** Supports Platform Quality of Service Enforcement (PQE) capability if 1<br/>
> **AVX512F** AVX-512 Foundation<br/>
> **AVX512DQ** AVX-512 Doubleword and Quadword Instructions<br/>
> **RDSEED** RDSEED instruction<br/>
> **ADX** Intel ADX (Multi-Precision Add-Carry Instruction Extensions)<br/>
> **SMAP** Supervisor Mode Access Prevention<br/>
> **AVX512IFMA** AVX-512 Integer Fused Multiply-Add Instructions<br/>
> **PCOMMIT** PCOMMIT instruction<br/>
> **CLFLUSHOPT** CLFLUSHOPT instruction<br/>
> **CLWB** CLWB instruction<br/>
> **INTEL_PROCESSOR_TRACE** Intel Processor Trace<br/>
> **AVX512PF** AVX-512 Prefetch Instructions<br/>
> **AVX512ER** AVX-512 Exponential and Reciprocal Instructions<br/>
> **AVX512CD** AVX-512 Conflict Detection Instructions<br/>
> **SHA** Intel SHA extensions<br/>
> **AVX512BW** AVX-512 Byte and Word Instructions<br/>
> **AVX512VL** AVX-512 Vector Length Extensions<br/>
> **PREFETCHWT1** PREFETCHWT1 instruction<br/>
> **AVX512VBMI** AVX-512 Vector Bit Manipulation Instructions<br/>
* **func HasExtraFeature(feature uint64) bool**
> **LAHF_LM** LahfSahf LAHF and SAHF instruction support in 64-bit mod<br/>
> **CMP_LEGACY** CmpLegacy Core multi-processing legacy mode.<br/>
> **SVM** SVM Secure virtual machine.<br/>
> **EXTAPIC** ExtApicSpace Extended APIC space.<br/>
> **CR8_LEGACY** AltMovCr8 LOCK MOV CR0 means MOV CR8.<br/>
> **ABM** ABM Advanced bit manipulation. LZCNT instruction support.<br/>
> **SSE4A** SSE4A EXTRQ, INSERTQ, MOVNTSS, and MOVNTSD instruction support.<br/>
> **MISALIGNSSE** Misaligned SSE mode.<br/>
> **PREFETCHW** PREFETCH and PREFETCHW instruction support.<br/>
> **OSVW** OSVW OS visible workaround. Indicates OS-visible workaround support.<br/>
> **IBS** IBS Instruction based sampling.<br/>
> **XOP** XOP Extended operation support.<br/>
> **SKINIT** SKINIT SKINIT and STGI are supported.<br/>
> **WDT** WDT Watchdog timer support.<br/>
> **LWP** LWP Lightweight profiling support.<br/>
> **FMA4** FMA4 Four-operand FMA instruction support.<br/>
> **TCE** Translation Cache Extension<br/>
> **NODEID_MSR** NodeID MSR<br/>
> **TBM** TBM Trailing bit manipulation instruction support.<br/>
> **TOPOEXT** TopologyExtensio Topology extensions support.<br/>
> **PERFCTR_CORE** PerfCtrExtCore Processor performance counter extensions support.<br/>
> **PERFCTR_NB** PerfCtrExtNB NB performance counter extensions support.<br/>
> **SPM** StreamPerfMon Streaming performance monitor architecture.<br/>
> **DBX** DataBreakpointEx Data access breakpoint extension.<br/>
> **PERFTSC** PerfTsc<br/>
> **PCX_L2I** L2I perf counter extensions<br/>
> **FPU_2** Onboard x87 FPU<br/>
> **VME_2** Virtual mode extensions (VIF)<br/>
> **DE_2** Debugging extensions (CR4 bit 3)<br/>
> **PSE_2** Page Size Extension<br/>
> **TSC_2** Time Stamp Counter<br/>
> **MSR_2** Model-specific register<br/>
> **PAE_2** Physical Address Extension<br/>
> **MCE_2** Machine Check Exception<br/>
> **CX8_2** CMPXCHG8 (compare-and-swap) instruction<br/>
> **APIC_2** Onboard Advanced Programmable Interrupt Controller<br/>
> **SYSCALL** SYSCALL and SYSRET instructions<br/>
> **MTRR_2** Memory Type Range Registers<br/>
> **PGE_2** Page Global Enable bit in CR4<br/>
> **MCA_2** Machine check architecture<br/>
> **CMOV_2** Conditional move and FCMOV instructions<br/>
> **PAT_2** Page Attribute Table<br/>
> **PSE36** 36-bit page size extension<br/>
> **MP** Multiprocessor Capable<br/>
> **NX** NX bit<br/>
> **MMXEXT** Extended MMX<br/>
> **MMX_2** MMX instructions<br/>
> **FXSR_2** FXSAVE, FXRSTOR instructions<br/>
> **FXSR_OPT** FXSAVE/FXRSTOR optimizations<br/>
> **PDPE1GB** Gibibyte pages<br/>
> **RDTSCP** RDTSCP instruction<br/>
> **LM** Long mode<br/>
> **_3DNOWEXT** Extended 3DNow!<br/>
> **_3DNOW** 3DNow!<br/>

File diff suppressed because it is too large Load Diff

View File

@ -1,24 +0,0 @@
// Copyright 2017 Intel Corporation.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
#include "textflag.h"
// func cpuid_low(arg1, arg2 uint32) (eax, ebx, ecx, edx uint32)
TEXT ·cpuid_low(SB),NOSPLIT,$0-24
MOVL arg1+0(FP), AX
MOVL arg2+4(FP), CX
CPUID
MOVL AX, eax+8(FP)
MOVL BX, ebx+12(FP)
MOVL CX, ecx+16(FP)
MOVL DX, edx+20(FP)
RET
// func xgetbv_low(arg1 uint32) (eax, edx uint32)
TEXT ·xgetbv_low(SB),NOSPLIT,$0-16
MOVL arg1+0(FP), CX
BYTE $0x0F
BYTE $0x01
BYTE $0xD0
MOVL AX,eax+8(FP)
MOVL DX,edx+12(FP)
RET

View File

@ -1,68 +0,0 @@
// Copyright 2017 Intel Corporation.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package main
import (
"fmt"
"github.com/intel-go/cpuid"
)
func main() {
fmt.Printf("VendorString: %s\n", cpuid.VendorIdentificatorString)
fmt.Printf("ProcessorBrandString: %s\n", cpuid.ProcessorBrandString)
fmt.Printf("SteppingId: %d\n", cpuid.SteppingId)
fmt.Printf("ProcessorType: %d\n", cpuid.ProcessorType)
fmt.Printf("DisplayFamily: %d\n", cpuid.DisplayFamily)
fmt.Printf("DisplayModel: %d\n", cpuid.DisplayModel)
fmt.Printf("CacheLineSize: %d\n", cpuid.CacheLineSize)
fmt.Printf("MaxLogocalCPUId:%d\n", cpuid.MaxLogocalCPUId)
fmt.Printf("InitialAPICId: %d\n", cpuid.InitialAPICId)
fmt.Printf("Smallest monitor-line size in bytes: %d\n", cpuid.MonLineSizeMin)
fmt.Printf("Largest monitor-line size in bytes: %d\n", cpuid.MonLineSizeMax)
fmt.Printf("Monitor Interrupt break-event is supported: %v\n", cpuid.MonitorIBE)
fmt.Printf("MONITOR/MWAIT extensions are supported: %v\n", cpuid.MonitorEMX)
fmt.Printf("AVX state: %v\n", cpuid.EnabledAVX)
fmt.Printf("AVX-512 state: %v\n", cpuid.EnabledAVX512)
fmt.Printf("Interrupt thresholds in digital thermal sensor: %v\n", cpuid.ThermalSensorInterruptThresholds)
fmt.Printf("Features: ")
for i := uint64(0); i < 64; i++ {
if cpuid.HasFeature(1 << i) {
fmt.Printf("%s ", cpuid.FeatureNames[1<<i])
}
}
fmt.Printf("\n")
fmt.Printf("ExtendedFeatures: ")
for i := uint64(0); i < 64; i++ {
if cpuid.HasExtendedFeature(1 << i) {
fmt.Printf("%s ", cpuid.ExtendedFeatureNames[1<<i])
}
}
fmt.Printf("\n")
fmt.Printf("ExtraFeatures: ")
for i := uint64(0); i < 64; i++ {
if cpuid.HasExtraFeature(1 << i) {
fmt.Printf("%s ", cpuid.ExtraFeatureNames[1<<i])
}
}
fmt.Printf("\n")
fmt.Printf("ThermalAndPowerFeatures: ")
for i := uint32(0); i < 64; i++ {
if cpuid.HasThermalAndPowerFeature(1 << i) {
if name, found := cpuid.ThermalAndPowerFeatureNames[1<<i]; found {
fmt.Printf("%s ", name)
}
}
}
fmt.Printf("\n")
for _, cacheDescription := range cpuid.CacheDescriptors {
fmt.Printf("CacheDescriptor: %v\n", cacheDescription)
}
}

View File

@ -1,28 +0,0 @@
Copyright (c) 2012 The Go Authors. All rights reserved.
Copyright (c) 2016 Intel Corporation. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
* Neither the name of Intel Corporation nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

View File

@ -1,43 +0,0 @@
# fastjson: optimized standard library JSON for Go
`fastjson` has the same API as json from standard library `encoding/json`.
The `Unmarshal` and `Decode` functions are faster, but everything else is the same as `encoding/json`
## Getting Started
```
$go get github.com/intel-go/fastjson
```
##Perfomance
The performance depends on the content of your json structures, not the structure you parse to.
If `.json` has a lot of strings or numbers, fastjson is significantly faster than `encoding/json`
##Example
```Go
import (
"github.com/intel-go/fastjson"
"fmt"
)
func main() {
var jsonBlob = []byte(`[
{"Name": "Platypus", "Order": "Monotremata"},
{"Name": "Quoll", "Order": "Dasyuromorphia"}
]`)
type Animal struct {
Name string
Order string
}
var animals []Animal
err := fastjson.Unmarshal(jsonBlob, &animals)
if err != nil {
fmt.Println("error:", err)
}
fmt.Printf("%+v", animals)
// Output:
// [{Name:Platypus Order:Monotremata} {Name:Quoll Order:Dasyuromorphia}]
}
```
##API
API is the same as encoding/json
[GoDoc](https://golang.org/pkg/encoding/json/#Unmarshal)

View File

@ -1,310 +0,0 @@
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Large data benchmark.
// The JSON data is a summary of agl's changes in the
// go, webkit, and chromium open source projects.
// We benchmark converting between the JSON form
// and in-memory data structures.
package fastjson
import (
"bytes"
"compress/gzip"
"io/ioutil"
"os"
"strings"
"testing"
)
type codeResponse struct {
Tree *codeNode `json:"tree"`
Username string `json:"username"`
}
type codeNode struct {
Name string `json:"name"`
Kids []*codeNode `json:"kids"`
CLWeight float64 `json:"cl_weight"`
Touches int `json:"touches"`
MinT int64 `json:"min_t"`
MaxT int64 `json:"max_t"`
MeanT int64 `json:"mean_t"`
}
var testData [][]byte
var codeJSON []byte
var codeStruct codeResponse
var fileNames = [...]string{"testdata/canada.json.gz",
"testdata/code.json.gz",
"testdata/large-dict.json.gz",
"testdata/medium-dict.json.gz"}
func codeInit() {
f, err := os.Open("testdata/code.json.gz")
if err != nil {
panic(err)
}
defer f.Close()
gz, err := gzip.NewReader(f)
if err != nil {
panic(err)
}
data, err := ioutil.ReadAll(gz)
if err != nil {
panic(err)
}
codeJSON = data
if err := Unmarshal(codeJSON, &codeStruct); err != nil {
panic("unmarshal code.json: " + err.Error())
}
if data, err = Marshal(&codeStruct); err != nil {
panic("marshal code.json: " + err.Error())
}
if !bytes.Equal(data, codeJSON) {
println("different lengths", len(data), len(codeJSON))
for i := 0; i < len(data) && i < len(codeJSON); i++ {
if data[i] != codeJSON[i] {
println("re-marshal: changed at byte", i)
println("orig: ", string(codeJSON[i-10:i+10]))
println("new: ", string(data[i-10:i+10]))
break
}
}
panic("re-marshal code.json: different result")
}
testData = make([][]byte, len(fileNames))
for i, name := range fileNames {
f, err = os.Open(name)
if err != nil {
panic(err)
}
defer f.Close()
gz, err = gzip.NewReader(f)
if err != nil {
panic(err)
}
testData[i], err = ioutil.ReadAll(gz)
if err != nil {
panic(err)
}
var jsonObj interface{}
if err = Unmarshal(testData[i], &jsonObj); err != nil {
panic("unmarshal code.json: " + err.Error())
}
}
}
func BenchmarkCodeEncoder(b *testing.B) {
if codeJSON == nil {
b.StopTimer()
codeInit()
b.StartTimer()
}
enc := NewEncoder(ioutil.Discard)
for i := 0; i < b.N; i++ {
if err := enc.Encode(&codeStruct); err != nil {
b.Fatal("Encode:", err)
}
}
b.SetBytes(int64(len(codeJSON)))
}
func BenchmarkCodeMarshal(b *testing.B) {
if codeJSON == nil {
b.StopTimer()
codeInit()
b.StartTimer()
}
for i := 0; i < b.N; i++ {
if _, err := Marshal(&codeStruct); err != nil {
b.Fatal("Marshal:", err)
}
}
b.SetBytes(int64(len(codeJSON)))
}
func BenchmarkCodeDecoder(b *testing.B) {
if codeJSON == nil {
b.StopTimer()
codeInit()
b.StartTimer()
}
var buf bytes.Buffer
dec := NewDecoder(&buf)
var r codeResponse
for i := 0; i < b.N; i++ {
buf.Write(codeJSON)
// hide EOF
buf.WriteByte('\n')
buf.WriteByte('\n')
buf.WriteByte('\n')
if err := dec.Decode(&r); err != nil {
b.Fatal("Decode:", err)
}
}
b.SetBytes(int64(len(codeJSON)))
}
func BenchmarkDecoderStream(b *testing.B) {
b.StopTimer()
var buf bytes.Buffer
dec := NewDecoder(&buf)
buf.WriteString(`"` + strings.Repeat("x", 1000000) + `"` + "\n\n\n")
var x interface{}
if err := dec.Decode(&x); err != nil {
b.Fatal("Decode:", err)
}
ones := strings.Repeat(" 1\n", 300000) + "\n\n\n"
b.StartTimer()
for i := 0; i < b.N; i++ {
if i%300000 == 0 {
buf.WriteString(ones)
}
x = nil
if err := dec.Decode(&x); err != nil || x != 1.0 {
b.Fatalf("Decode: %v after %d", err, i)
}
}
}
func BenchmarkCodeUnmarshal(b *testing.B) {
if codeJSON == nil {
b.StopTimer()
codeInit()
b.StartTimer()
}
for i := 0; i < b.N; i++ {
var r codeResponse
if err := Unmarshal(codeJSON, &r); err != nil {
b.Fatal("Unmarshal:", err)
}
}
b.SetBytes(int64(len(codeJSON)))
}
func BenchmarkCodeUnmarshalReuse(b *testing.B) {
if codeJSON == nil {
b.StopTimer()
codeInit()
b.StartTimer()
}
var r codeResponse
for i := 0; i < b.N; i++ {
if err := Unmarshal(codeJSON, &r); err != nil {
b.Fatal("Unmarshal:", err)
}
}
}
func BenchmarkCodeUnmarshalManyNumbers(b *testing.B) {
if codeJSON == nil {
b.StopTimer()
codeInit()
b.StartTimer()
}
for i := 0; i < b.N; i++ {
var r interface{}
if err := Unmarshal(testData[0], &r); err != nil {
b.Fatal("Unmarshal:", err)
}
}
b.SetBytes(int64(len(testData[0])))
}
func BenchmarkCodeUnmarshalNoReflect(b *testing.B) {
if codeJSON == nil {
b.StopTimer()
codeInit()
b.StartTimer()
}
for i := 0; i < b.N; i++ {
var r interface{}
if err := Unmarshal(testData[1], &r); err != nil {
b.Fatal("Unmarshal:", err)
}
}
b.SetBytes(int64(len(testData[1])))
}
func BenchmarkCodeUnmarshalLargeFile(b *testing.B) {
if codeJSON == nil {
b.StopTimer()
codeInit()
b.StartTimer()
}
for i := 0; i < b.N; i++ {
var r interface{}
if err := Unmarshal(testData[2], &r); err != nil {
b.Fatal("Unmarshal:", err)
}
}
b.SetBytes(int64(len(testData[2])))
}
func BenchmarkCodeUnmarshalMediumFile(b *testing.B) {
if codeJSON == nil {
b.StopTimer()
codeInit()
b.StartTimer()
}
for i := 0; i < b.N; i++ {
var r interface{}
if err := Unmarshal(testData[3], &r); err != nil {
b.Fatal("Unmarshal:", err)
}
}
b.SetBytes(int64(len(testData[3])))
}
func BenchmarkUnmarshalString(b *testing.B) {
data := []byte(`"hello, world"`)
var s string
for i := 0; i < b.N; i++ {
if err := Unmarshal(data, &s); err != nil {
b.Fatal("Unmarshal:", err)
}
}
}
func BenchmarkUnmarshalFloat64(b *testing.B) {
var f float64
data := []byte(`3.14`)
for i := 0; i < b.N; i++ {
if err := Unmarshal(data, &f); err != nil {
b.Fatal("Unmarshal:", err)
}
}
}
func BenchmarkUnmarshalInt64(b *testing.B) {
var x int64
data := []byte(`3`)
for i := 0; i < b.N; i++ {
if err := Unmarshal(data, &x); err != nil {
b.Fatal("Unmarshal:", err)
}
}
}
func BenchmarkIssue10335(b *testing.B) {
b.ReportAllocs()
var s struct{}
j := []byte(`{"a":{ }}`)
for n := 0; n < b.N; n++ {
if err := Unmarshal(j, &s); err != nil {
b.Fatal(err)
}
}
}

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -1,538 +0,0 @@
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package fastjson
import (
"bytes"
"math"
"reflect"
"testing"
"unicode"
)
type Optionals struct {
Sr string `json:"sr"`
So string `json:"so,omitempty"`
Sw string `json:"-"`
Ir int `json:"omitempty"` // actually named omitempty, not an option
Io int `json:"io,omitempty"`
Slr []string `json:"slr,random"`
Slo []string `json:"slo,omitempty"`
Mr map[string]interface{} `json:"mr"`
Mo map[string]interface{} `json:",omitempty"`
Fr float64 `json:"fr"`
Fo float64 `json:"fo,omitempty"`
Br bool `json:"br"`
Bo bool `json:"bo,omitempty"`
Ur uint `json:"ur"`
Uo uint `json:"uo,omitempty"`
Str struct{} `json:"str"`
Sto struct{} `json:"sto,omitempty"`
}
var optionalsExpected = `{
"sr": "",
"omitempty": 0,
"slr": null,
"mr": {},
"fr": 0,
"br": false,
"ur": 0,
"str": {},
"sto": {}
}`
func TestOmitEmpty(t *testing.T) {
var o Optionals
o.Sw = "something"
o.Mr = map[string]interface{}{}
o.Mo = map[string]interface{}{}
got, err := MarshalIndent(&o, "", " ")
if err != nil {
t.Fatal(err)
}
if got := string(got); got != optionalsExpected {
t.Errorf(" got: %s\nwant: %s\n", got, optionalsExpected)
}
}
type StringTag struct {
BoolStr bool `json:",string"`
IntStr int64 `json:",string"`
StrStr string `json:",string"`
}
var stringTagExpected = `{
"BoolStr": "true",
"IntStr": "42",
"StrStr": "\"xzbit\""
}`
func TestStringTag(t *testing.T) {
var s StringTag
s.BoolStr = true
s.IntStr = 42
s.StrStr = "xzbit"
got, err := MarshalIndent(&s, "", " ")
if err != nil {
t.Fatal(err)
}
if got := string(got); got != stringTagExpected {
t.Fatalf(" got: %s\nwant: %s\n", got, stringTagExpected)
}
// Verify that it round-trips.
var s2 StringTag
err = NewDecoder(bytes.NewReader(got)).Decode(&s2)
if err != nil {
t.Fatalf("Decode: %v", err)
}
if !reflect.DeepEqual(s, s2) {
t.Fatalf("decode didn't match.\nsource: %#v\nEncoded as:\n%s\ndecode: %#v", s, string(got), s2)
}
}
// byte slices are special even if they're renamed types.
type renamedByte byte
type renamedByteSlice []byte
type renamedRenamedByteSlice []renamedByte
func TestEncodeRenamedByteSlice(t *testing.T) {
s := renamedByteSlice("abc")
result, err := Marshal(s)
if err != nil {
t.Fatal(err)
}
expect := `"YWJj"`
if string(result) != expect {
t.Errorf(" got %s want %s", result, expect)
}
r := renamedRenamedByteSlice("abc")
result, err = Marshal(r)
if err != nil {
t.Fatal(err)
}
if string(result) != expect {
t.Errorf(" got %s want %s", result, expect)
}
}
var unsupportedValues = []interface{}{
math.NaN(),
math.Inf(-1),
math.Inf(1),
}
func TestUnsupportedValues(t *testing.T) {
for _, v := range unsupportedValues {
if _, err := Marshal(v); err != nil {
if _, ok := err.(*UnsupportedValueError); !ok {
t.Errorf("for %v, got %T want UnsupportedValueError", v, err)
}
} else {
t.Errorf("for %v, expected error", v)
}
}
}
// Ref has Marshaler and Unmarshaler methods with pointer receiver.
type Ref int
func (*Ref) MarshalJSON() ([]byte, error) {
return []byte(`"ref"`), nil
}
func (r *Ref) UnmarshalJSON([]byte) error {
*r = 12
return nil
}
// Val has Marshaler methods with value receiver.
type Val int
func (Val) MarshalJSON() ([]byte, error) {
return []byte(`"val"`), nil
}
// RefText has Marshaler and Unmarshaler methods with pointer receiver.
type RefText int
func (*RefText) MarshalText() ([]byte, error) {
return []byte(`"ref"`), nil
}
func (r *RefText) UnmarshalText([]byte) error {
*r = 13
return nil
}
// ValText has Marshaler methods with value receiver.
type ValText int
func (ValText) MarshalText() ([]byte, error) {
return []byte(`"val"`), nil
}
func TestRefValMarshal(t *testing.T) {
var s = struct {
R0 Ref
R1 *Ref
R2 RefText
R3 *RefText
V0 Val
V1 *Val
V2 ValText
V3 *ValText
}{
R0: 12,
R1: new(Ref),
R2: 14,
R3: new(RefText),
V0: 13,
V1: new(Val),
V2: 15,
V3: new(ValText),
}
const want = `{"R0":"ref","R1":"ref","R2":"\"ref\"","R3":"\"ref\"","V0":"val","V1":"val","V2":"\"val\"","V3":"\"val\""}`
b, err := Marshal(&s)
if err != nil {
t.Fatalf("Marshal: %v", err)
}
if got := string(b); got != want {
t.Errorf("got %q, want %q", got, want)
}
}
// C implements Marshaler and returns unescaped JSON.
type C int
func (C) MarshalJSON() ([]byte, error) {
return []byte(`"<&>"`), nil
}
// CText implements Marshaler and returns unescaped text.
type CText int
func (CText) MarshalText() ([]byte, error) {
return []byte(`"<&>"`), nil
}
func TestMarshalerEscaping(t *testing.T) {
var c C
want := `"\u003c\u0026\u003e"`
b, err := Marshal(c)
if err != nil {
t.Fatalf("Marshal(c): %v", err)
}
if got := string(b); got != want {
t.Errorf("Marshal(c) = %#q, want %#q", got, want)
}
var ct CText
want = `"\"\u003c\u0026\u003e\""`
b, err = Marshal(ct)
if err != nil {
t.Fatalf("Marshal(ct): %v", err)
}
if got := string(b); got != want {
t.Errorf("Marshal(ct) = %#q, want %#q", got, want)
}
}
type IntType int
type MyStruct struct {
IntType
}
func TestAnonymousNonstruct(t *testing.T) {
var i IntType = 11
a := MyStruct{i}
const want = `{"IntType":11}`
b, err := Marshal(a)
if err != nil {
t.Fatalf("Marshal: %v", err)
}
if got := string(b); got != want {
t.Errorf("got %q, want %q", got, want)
}
}
type BugA struct {
S string
}
type BugB struct {
BugA
S string
}
type BugC struct {
S string
}
// Legal Go: We never use the repeated embedded field (S).
type BugX struct {
A int
BugA
BugB
}
// Issue 5245.
func TestEmbeddedBug(t *testing.T) {
v := BugB{
BugA{"A"},
"B",
}
b, err := Marshal(v)
if err != nil {
t.Fatal("Marshal:", err)
}
want := `{"S":"B"}`
got := string(b)
if got != want {
t.Fatalf("Marshal: got %s want %s", got, want)
}
// Now check that the duplicate field, S, does not appear.
x := BugX{
A: 23,
}
b, err = Marshal(x)
if err != nil {
t.Fatal("Marshal:", err)
}
want = `{"A":23}`
got = string(b)
if got != want {
t.Fatalf("Marshal: got %s want %s", got, want)
}
}
type BugD struct { // Same as BugA after tagging.
XXX string `json:"S"`
}
// BugD's tagged S field should dominate BugA's.
type BugY struct {
BugA
BugD
}
// Test that a field with a tag dominates untagged fields.
func TestTaggedFieldDominates(t *testing.T) {
v := BugY{
BugA{"BugA"},
BugD{"BugD"},
}
b, err := Marshal(v)
if err != nil {
t.Fatal("Marshal:", err)
}
want := `{"S":"BugD"}`
got := string(b)
if got != want {
t.Fatalf("Marshal: got %s want %s", got, want)
}
}
// There are no tags here, so S should not appear.
type BugZ struct {
BugA
BugC
BugY // Contains a tagged S field through BugD; should not dominate.
}
func TestDuplicatedFieldDisappears(t *testing.T) {
v := BugZ{
BugA{"BugA"},
BugC{"BugC"},
BugY{
BugA{"nested BugA"},
BugD{"nested BugD"},
},
}
b, err := Marshal(v)
if err != nil {
t.Fatal("Marshal:", err)
}
want := `{}`
got := string(b)
if got != want {
t.Fatalf("Marshal: got %s want %s", got, want)
}
}
func TestStringBytes(t *testing.T) {
// Test that encodeState.stringBytes and encodeState.string use the same encoding.
es := &encodeState{}
var r []rune
for i := '\u0000'; i <= unicode.MaxRune; i++ {
r = append(r, i)
}
s := string(r) + "\xff\xff\xffhello" // some invalid UTF-8 too
es.string(s)
esBytes := &encodeState{}
esBytes.stringBytes([]byte(s))
enc := es.Buffer.String()
encBytes := esBytes.Buffer.String()
if enc != encBytes {
i := 0
for i < len(enc) && i < len(encBytes) && enc[i] == encBytes[i] {
i++
}
enc = enc[i:]
encBytes = encBytes[i:]
i = 0
for i < len(enc) && i < len(encBytes) && enc[len(enc)-i-1] == encBytes[len(encBytes)-i-1] {
i++
}
enc = enc[:len(enc)-i]
encBytes = encBytes[:len(encBytes)-i]
if len(enc) > 20 {
enc = enc[:20] + "..."
}
if len(encBytes) > 20 {
encBytes = encBytes[:20] + "..."
}
t.Errorf("encodings differ at %#q vs %#q", enc, encBytes)
}
}
func TestIssue6458(t *testing.T) {
type Foo struct {
M RawMessage
}
x := Foo{RawMessage(`"foo"`)}
b, err := Marshal(&x)
if err != nil {
t.Fatal(err)
}
if want := `{"M":"foo"}`; string(b) != want {
t.Errorf("Marshal(&x) = %#q; want %#q", b, want)
}
b, err = Marshal(x)
if err != nil {
t.Fatal(err)
}
if want := `{"M":"ImZvbyI="}`; string(b) != want {
t.Errorf("Marshal(x) = %#q; want %#q", b, want)
}
}
func TestIssue10281(t *testing.T) {
type Foo struct {
N Number
}
x := Foo{Number(`invalid`)}
b, err := Marshal(&x)
if err == nil {
t.Errorf("Marshal(&x) = %#q; want error", b)
}
}
func TestHTMLEscape(t *testing.T) {
var b, want bytes.Buffer
m := `{"M":"<html>foo &` + "\xe2\x80\xa8 \xe2\x80\xa9" + `</html>"}`
want.Write([]byte(`{"M":"\u003chtml\u003efoo \u0026\u2028 \u2029\u003c/html\u003e"}`))
HTMLEscape(&b, []byte(m))
if !bytes.Equal(b.Bytes(), want.Bytes()) {
t.Errorf("HTMLEscape(&b, []byte(m)) = %s; want %s", b.Bytes(), want.Bytes())
}
}
// golang.org/issue/8582
func TestEncodePointerString(t *testing.T) {
type stringPointer struct {
N *int64 `json:"n,string"`
}
var n int64 = 42
b, err := Marshal(stringPointer{N: &n})
if err != nil {
t.Fatalf("Marshal: %v", err)
}
if got, want := string(b), `{"n":"42"}`; got != want {
t.Errorf("Marshal = %s, want %s", got, want)
}
var back stringPointer
err = Unmarshal(b, &back)
if err != nil {
t.Fatalf("Unmarshal: %v", err)
}
if back.N == nil {
t.Fatalf("Unmarshalled nil N field")
}
if *back.N != 42 {
t.Fatalf("*N = %d; want 42", *back.N)
}
}
var encodeStringTests = []struct {
in string
out string
}{
{"\x00", `"\u0000"`},
{"\x01", `"\u0001"`},
{"\x02", `"\u0002"`},
{"\x03", `"\u0003"`},
{"\x04", `"\u0004"`},
{"\x05", `"\u0005"`},
{"\x06", `"\u0006"`},
{"\x07", `"\u0007"`},
{"\x08", `"\u0008"`},
{"\x09", `"\t"`},
{"\x0a", `"\n"`},
{"\x0b", `"\u000b"`},
{"\x0c", `"\u000c"`},
{"\x0d", `"\r"`},
{"\x0e", `"\u000e"`},
{"\x0f", `"\u000f"`},
{"\x10", `"\u0010"`},
{"\x11", `"\u0011"`},
{"\x12", `"\u0012"`},
{"\x13", `"\u0013"`},
{"\x14", `"\u0014"`},
{"\x15", `"\u0015"`},
{"\x16", `"\u0016"`},
{"\x17", `"\u0017"`},
{"\x18", `"\u0018"`},
{"\x19", `"\u0019"`},
{"\x1a", `"\u001a"`},
{"\x1b", `"\u001b"`},
{"\x1c", `"\u001c"`},
{"\x1d", `"\u001d"`},
{"\x1e", `"\u001e"`},
{"\x1f", `"\u001f"`},
}
func TestEncodeString(t *testing.T) {
for _, tt := range encodeStringTests {
b, err := Marshal(tt.in)
if err != nil {
t.Errorf("Marshal(%q): %v", tt.in, err)
continue
}
out := string(b)
if out != tt.out {
t.Errorf("Marshal(%q) = %#q, want %#q", tt.in, out, tt.out)
}
}
}

View File

@ -1,252 +0,0 @@
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package fastjson_test
import (
"bytes"
"encoding/json"
"fmt"
"io"
"log"
"os"
"strings"
)
func ExampleMarshal() {
type ColorGroup struct {
ID int
Name string
Colors []string
}
group := ColorGroup{
ID: 1,
Name: "Reds",
Colors: []string{"Crimson", "Red", "Ruby", "Maroon"},
}
b, err := json.Marshal(group)
if err != nil {
fmt.Println("error:", err)
}
os.Stdout.Write(b)
// Output:
// {"ID":1,"Name":"Reds","Colors":["Crimson","Red","Ruby","Maroon"]}
}
func ExampleUnmarshal() {
var jsonBlob = []byte(`[
{"Name": "Platypus", "Order": "Monotremata"},
{"Name": "Quoll", "Order": "Dasyuromorphia"}
]`)
type Animal struct {
Name string
Order string
}
var animals []Animal
err := json.Unmarshal(jsonBlob, &animals)
if err != nil {
fmt.Println("error:", err)
}
fmt.Printf("%+v", animals)
// Output:
// [{Name:Platypus Order:Monotremata} {Name:Quoll Order:Dasyuromorphia}]
}
// This example uses a Decoder to decode a stream of distinct JSON values.
func ExampleDecoder() {
const jsonStream = `
{"Name": "Ed", "Text": "Knock knock."}
{"Name": "Sam", "Text": "Who's there?"}
{"Name": "Ed", "Text": "Go fmt."}
{"Name": "Sam", "Text": "Go fmt who?"}
{"Name": "Ed", "Text": "Go fmt yourself!"}
`
type Message struct {
Name, Text string
}
dec := json.NewDecoder(strings.NewReader(jsonStream))
for {
var m Message
if err := dec.Decode(&m); err == io.EOF {
break
} else if err != nil {
log.Fatal(err)
}
fmt.Printf("%s: %s\n", m.Name, m.Text)
}
// Output:
// Ed: Knock knock.
// Sam: Who's there?
// Ed: Go fmt.
// Sam: Go fmt who?
// Ed: Go fmt yourself!
}
// This example uses a Decoder to decode a stream of distinct JSON values.
func ExampleDecoder_Token() {
const jsonStream = `
{"Message": "Hello", "Array": [1, 2, 3], "Null": null, "Number": 1.234}
`
dec := json.NewDecoder(strings.NewReader(jsonStream))
for {
t, err := dec.Token()
if err == io.EOF {
break
}
if err != nil {
log.Fatal(err)
}
fmt.Printf("%T: %v", t, t)
if dec.More() {
fmt.Printf(" (more)")
}
fmt.Printf("\n")
}
// Output:
// json.Delim: { (more)
// string: Message (more)
// string: Hello (more)
// string: Array (more)
// json.Delim: [ (more)
// float64: 1 (more)
// float64: 2 (more)
// float64: 3
// json.Delim: ] (more)
// string: Null (more)
// <nil>: <nil> (more)
// string: Number (more)
// float64: 1.234
// json.Delim: }
}
// This example uses a Decoder to decode a streaming array of JSON objects.
func ExampleDecoder_Decode_stream() {
const jsonStream = `
[
{"Name": "Ed", "Text": "Knock knock."},
{"Name": "Sam", "Text": "Who's there?"},
{"Name": "Ed", "Text": "Go fmt."},
{"Name": "Sam", "Text": "Go fmt who?"},
{"Name": "Ed", "Text": "Go fmt yourself!"}
]
`
type Message struct {
Name, Text string
}
dec := json.NewDecoder(strings.NewReader(jsonStream))
// read open bracket
t, err := dec.Token()
if err != nil {
log.Fatal(err)
}
fmt.Printf("%T: %v\n", t, t)
var m Message
// while the array contains values
for dec.More() {
// decode an array value (Message)
err := dec.Decode(&m)
if err != nil {
log.Fatal(err)
}
fmt.Printf("%v: %v\n", m.Name, m.Text)
}
// read closing bracket
t, err = dec.Token()
if err != nil {
log.Fatal(err)
}
fmt.Printf("%T: %v\n", t, t)
// Output:
// json.Delim: [
// Ed: Knock knock.
// Sam: Who's there?
// Ed: Go fmt.
// Sam: Go fmt who?
// Ed: Go fmt yourself!
// json.Delim: ]
}
// This example uses RawMessage to delay parsing part of a JSON message.
func ExampleRawMessage() {
type Color struct {
Space string
Point json.RawMessage // delay parsing until we know the color space
}
type RGB struct {
R uint8
G uint8
B uint8
}
type YCbCr struct {
Y uint8
Cb int8
Cr int8
}
var j = []byte(`[
{"Space": "YCbCr", "Point": {"Y": 255, "Cb": 0, "Cr": -10}},
{"Space": "RGB", "Point": {"R": 98, "G": 218, "B": 255}}
]`)
var colors []Color
err := json.Unmarshal(j, &colors)
if err != nil {
log.Fatalln("error:", err)
}
for _, c := range colors {
var dst interface{}
switch c.Space {
case "RGB":
dst = new(RGB)
case "YCbCr":
dst = new(YCbCr)
}
err := json.Unmarshal(c.Point, dst)
if err != nil {
log.Fatalln("error:", err)
}
fmt.Println(c.Space, dst)
}
// Output:
// YCbCr &{255 0 -10}
// RGB &{98 218 255}
}
func ExampleIndent() {
type Road struct {
Name string
Number int
}
roads := []Road{
{"Diamond Fork", 29},
{"Sheep Creek", 51},
}
b, err := json.Marshal(roads)
if err != nil {
log.Fatal(err)
}
var out bytes.Buffer
json.Indent(&out, b, "=", "\t")
out.WriteTo(os.Stdout)
// Output:
// [
// = {
// = "Name": "Diamond Fork",
// = "Number": 29
// = },
// = {
// = "Name": "Sheep Creek",
// = "Number": 51
// = }
// =]
}

View File

@ -1,143 +0,0 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package fastjson
import (
"bytes"
"unicode/utf8"
)
const (
caseMask = ^byte(0x20) // Mask to ignore case in ASCII.
kelvin = '\u212a'
smallLongEss = '\u017f'
)
// foldFunc returns one of four different case folding equivalence
// functions, from most general (and slow) to fastest:
//
// 1) bytes.EqualFold, if the key s contains any non-ASCII UTF-8
// 2) equalFoldRight, if s contains special folding ASCII ('k', 'K', 's', 'S')
// 3) asciiEqualFold, no special, but includes non-letters (including _)
// 4) simpleLetterEqualFold, no specials, no non-letters.
//
// The letters S and K are special because they map to 3 runes, not just 2:
// * S maps to s and to U+017F 'ſ' Latin small letter long s
// * k maps to K and to U+212A '' Kelvin sign
// See https://play.golang.org/p/tTxjOc0OGo
//
// The returned function is specialized for matching against s and
// should only be given s. It's not curried for performance reasons.
func foldFunc(s []byte) func(s, t []byte) bool {
nonLetter := false
special := false // special letter
for _, b := range s {
if b >= utf8.RuneSelf {
return bytes.EqualFold
}
upper := b & caseMask
if upper < 'A' || upper > 'Z' {
nonLetter = true
} else if upper == 'K' || upper == 'S' {
// See above for why these letters are special.
special = true
}
}
if special {
return equalFoldRight
}
if nonLetter {
return asciiEqualFold
}
return simpleLetterEqualFold
}
// equalFoldRight is a specialization of bytes.EqualFold when s is
// known to be all ASCII (including punctuation), but contains an 's',
// 'S', 'k', or 'K', requiring a Unicode fold on the bytes in t.
// See comments on foldFunc.
func equalFoldRight(s, t []byte) bool {
for _, sb := range s {
if len(t) == 0 {
return false
}
tb := t[0]
if tb < utf8.RuneSelf {
if sb != tb {
sbUpper := sb & caseMask
if 'A' <= sbUpper && sbUpper <= 'Z' {
if sbUpper != tb&caseMask {
return false
}
} else {
return false
}
}
t = t[1:]
continue
}
// sb is ASCII and t is not. t must be either kelvin
// sign or long s; sb must be s, S, k, or K.
tr, size := utf8.DecodeRune(t)
switch sb {
case 's', 'S':
if tr != smallLongEss {
return false
}
case 'k', 'K':
if tr != kelvin {
return false
}
default:
return false
}
t = t[size:]
}
if len(t) > 0 {
return false
}
return true
}
// asciiEqualFold is a specialization of bytes.EqualFold for use when
// s is all ASCII (but may contain non-letters) and contains no
// special-folding letters.
// See comments on foldFunc.
func asciiEqualFold(s, t []byte) bool {
if len(s) != len(t) {
return false
}
for i, sb := range s {
tb := t[i]
if sb == tb {
continue
}
if ('a' <= sb && sb <= 'z') || ('A' <= sb && sb <= 'Z') {
if sb&caseMask != tb&caseMask {
return false
}
} else {
return false
}
}
return true
}
// simpleLetterEqualFold is a specialization of bytes.EqualFold for
// use when s is all ASCII letters (no underscores, etc) and also
// doesn't contain 'k', 'K', 's', or 'S'.
// See comments on foldFunc.
func simpleLetterEqualFold(s, t []byte) bool {
if len(s) != len(t) {
return false
}
for i, b := range s {
if b&caseMask != t[i]&caseMask {
return false
}
}
return true
}

View File

@ -1,116 +0,0 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package fastjson
import (
"bytes"
"strings"
"testing"
"unicode/utf8"
)
var foldTests = []struct {
fn func(s, t []byte) bool
s, t string
want bool
}{
{equalFoldRight, "", "", true},
{equalFoldRight, "a", "a", true},
{equalFoldRight, "", "a", false},
{equalFoldRight, "a", "", false},
{equalFoldRight, "a", "A", true},
{equalFoldRight, "AB", "ab", true},
{equalFoldRight, "AB", "ac", false},
{equalFoldRight, "sbkKc", "ſbKc", true},
{equalFoldRight, "SbKkc", "ſbKc", true},
{equalFoldRight, "SbKkc", "ſbKK", false},
{equalFoldRight, "e", "é", false},
{equalFoldRight, "s", "S", true},
{simpleLetterEqualFold, "", "", true},
{simpleLetterEqualFold, "abc", "abc", true},
{simpleLetterEqualFold, "abc", "ABC", true},
{simpleLetterEqualFold, "abc", "ABCD", false},
{simpleLetterEqualFold, "abc", "xxx", false},
{asciiEqualFold, "a_B", "A_b", true},
{asciiEqualFold, "aa@", "aa`", false}, // verify 0x40 and 0x60 aren't case-equivalent
}
func TestFold(t *testing.T) {
for i, tt := range foldTests {
if got := tt.fn([]byte(tt.s), []byte(tt.t)); got != tt.want {
t.Errorf("%d. %q, %q = %v; want %v", i, tt.s, tt.t, got, tt.want)
}
truth := strings.EqualFold(tt.s, tt.t)
if truth != tt.want {
t.Errorf("strings.EqualFold doesn't agree with case %d", i)
}
}
}
func TestFoldAgainstUnicode(t *testing.T) {
const bufSize = 5
buf1 := make([]byte, 0, bufSize)
buf2 := make([]byte, 0, bufSize)
var runes []rune
for i := 0x20; i <= 0x7f; i++ {
runes = append(runes, rune(i))
}
runes = append(runes, kelvin, smallLongEss)
funcs := []struct {
name string
fold func(s, t []byte) bool
letter bool // must be ASCII letter
simple bool // must be simple ASCII letter (not 'S' or 'K')
}{
{
name: "equalFoldRight",
fold: equalFoldRight,
},
{
name: "asciiEqualFold",
fold: asciiEqualFold,
simple: true,
},
{
name: "simpleLetterEqualFold",
fold: simpleLetterEqualFold,
simple: true,
letter: true,
},
}
for _, ff := range funcs {
for _, r := range runes {
if r >= utf8.RuneSelf {
continue
}
if ff.letter && !isASCIILetter(byte(r)) {
continue
}
if ff.simple && (r == 's' || r == 'S' || r == 'k' || r == 'K') {
continue
}
for _, r2 := range runes {
buf1 := append(buf1[:0], 'x')
buf2 := append(buf2[:0], 'x')
buf1 = buf1[:1+utf8.EncodeRune(buf1[1:bufSize], r)]
buf2 = buf2[:1+utf8.EncodeRune(buf2[1:bufSize], r2)]
buf1 = append(buf1, 'x')
buf2 = append(buf2, 'x')
want := bytes.EqualFold(buf1, buf2)
if got := ff.fold(buf1, buf2); got != want {
t.Errorf("%s(%q, %q) = %v; want %v", ff.name, buf1, buf2, got, want)
}
}
}
}
}
func isASCIILetter(b byte) bool {
return ('A' <= b && b <= 'Z') || ('a' <= b && b <= 'z')
}

View File

@ -1,141 +0,0 @@
// Copyright 2010 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package fastjson
import "bytes"
// Compact appends to dst the JSON-encoded src with
// insignificant space characters elided.
func Compact(dst *bytes.Buffer, src []byte) error {
return compact(dst, src, false)
}
func compact(dst *bytes.Buffer, src []byte, escape bool) error {
origLen := dst.Len()
var scan scanner
scan.reset()
start := 0
for i, c := range src {
if escape && (c == '<' || c == '>' || c == '&') {
if start < i {
dst.Write(src[start:i])
}
dst.WriteString(`\u00`)
dst.WriteByte(hex[c>>4])
dst.WriteByte(hex[c&0xF])
start = i + 1
}
// Convert U+2028 and U+2029 (E2 80 A8 and E2 80 A9).
if c == 0xE2 && i+2 < len(src) && src[i+1] == 0x80 && src[i+2]&^1 == 0xA8 {
if start < i {
dst.Write(src[start:i])
}
dst.WriteString(`\u202`)
dst.WriteByte(hex[src[i+2]&0xF])
start = i + 3
}
v := scan.step(&scan, c)
if v >= scanSkipSpace {
if v == scanError {
break
}
if start < i {
dst.Write(src[start:i])
}
start = i + 1
}
}
if scan.eof() == scanError {
dst.Truncate(origLen)
return scan.err
}
if start < len(src) {
dst.Write(src[start:])
}
return nil
}
func newline(dst *bytes.Buffer, prefix, indent string, depth int) {
dst.WriteByte('\n')
dst.WriteString(prefix)
for i := 0; i < depth; i++ {
dst.WriteString(indent)
}
}
// Indent appends to dst an indented form of the JSON-encoded src.
// Each element in a JSON object or array begins on a new,
// indented line beginning with prefix followed by one or more
// copies of indent according to the indentation nesting.
// The data appended to dst does not begin with the prefix nor
// any indentation, to make it easier to embed inside other formatted JSON data.
// Although leading space characters (space, tab, carriage return, newline)
// at the beginning of src are dropped, trailing space characters
// at the end of src are preserved and copied to dst.
// For example, if src has no trailing spaces, neither will dst;
// if src ends in a trailing newline, so will dst.
func Indent(dst *bytes.Buffer, src []byte, prefix, indent string) error {
origLen := dst.Len()
var scan scanner
scan.reset()
needIndent := false
depth := 0
for _, c := range src {
scan.bytes++
v := scan.step(&scan, c)
if v == scanSkipSpace {
continue
}
if v == scanError {
break
}
if needIndent && v != scanEndObject && v != scanEndArray {
needIndent = false
depth++
newline(dst, prefix, indent, depth)
}
// Emit semantically uninteresting bytes
// (in particular, punctuation in strings) unmodified.
if v == scanContinue {
dst.WriteByte(c)
continue
}
// Add spacing around real punctuation.
switch c {
case '{', '[':
// delay indent so that empty object and array are formatted as {} and [].
needIndent = true
dst.WriteByte(c)
case ',':
dst.WriteByte(c)
newline(dst, prefix, indent, depth)
case ':':
dst.WriteByte(c)
dst.WriteByte(' ')
case '}', ']':
if needIndent {
// suppress indent in empty object/array
needIndent = false
} else {
depth--
newline(dst, prefix, indent, depth)
}
dst.WriteByte(c)
default:
dst.WriteByte(c)
}
}
if scan.eof() == scanError {
dst.Truncate(origLen)
return scan.err
}
return nil
}

Some files were not shown because too many files have changed in this diff Show More