// Copyright 2017-2021 DERO Project. All rights reserved. // Use of this source code in any form is governed by RESEARCH license. // license can be found in the LICENSE file. // GPG: 0F39 E425 8C65 3947 702A 8234 08B2 0360 A03A 9DE8 // // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY // EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF // MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL // THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, // STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF // THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. package crypto //import "fmt" import "math" import "math/big" //import "crypto/rand" import "encoding/hex" import "github.com/deroproject/derohe/cryptography/bn256" //import "golang.org/x/crypto/sha3" //import "github.com/kubernetes/klog" // below 2 structures form bulletproofs and many to many proofs type AnonSupport struct { v *big.Int w *big.Int vPow *big.Int wPow *big.Int f [][2]*big.Int r [][2]*big.Int temp *bn256.G1 CLnR *bn256.G1 CRnR *bn256.G1 CR [][2]*bn256.G1 yR [][2]*bn256.G1 C_XR *bn256.G1 y_XR *bn256.G1 gR *bn256.G1 DR *bn256.G1 } type ProtocolSupport struct { y *big.Int ys []*big.Int z *big.Int zs []*big.Int // [z^2, z^3] // only max 2 twoTimesZSquared [128]*big.Int zSum *big.Int x *big.Int t *big.Int k *big.Int tEval *bn256.G1 } // sigma protocol type SigmaSupport struct { c *big.Int A_y, A_D, A_b, A_X, A_t, A_u, A_u1 *bn256.G1 } // support structures are those which type InnerProductSupport struct { P bn256.G1 u_x bn256.G1 hPrimes []*bn256.G1 hPrimeSum bn256.G1 o *big.Int } func unmarshalpoint(input string) *bn256.G1 { d, err := hex.DecodeString(input) if err != nil { panic(err) } if len(d) != 64 { panic("wrong length") } x := new(bn256.G1) x.Unmarshal(d) return x } var gparams = NewGeneratorParams(128) // these can be pregenerated similarly as in DERO project // verify proof // first generate supporting structures func (proof *Proof) Verify(s *Statement, txid Hash, height uint64, extra_value uint64) bool { var anonsupport AnonSupport var protsupport ProtocolSupport var sigmasupport SigmaSupport if len(s.C) != len(s.Publickeylist) { return false } total_open_value := s.Fees + extra_value if total_open_value < s.Fees || total_open_value < extra_value { // stop over flowing attacks return false } statementhash := reducedhash(txid[:]) var input []byte input = append(input, ConvertBigIntToByte(statementhash)...) input = append(input, proof.BA.Marshal()...) input = append(input, proof.BS.Marshal()...) input = append(input, proof.A.Marshal()...) input = append(input, proof.B.Marshal()...) anonsupport.v = reducedhash(input) anonsupport.w = proof.hashmash1(anonsupport.v) m := proof.f.Length() / 2 N := int(math.Pow(2, float64(m))) anonsupport.f = make([][2]*big.Int, 2*m, 2*m) for k := 0; k < 2*m; k++ { anonsupport.f[k][1] = new(big.Int).Set(proof.f.vector[k]) anonsupport.f[k][0] = new(big.Int).Mod(new(big.Int).Sub(anonsupport.w, proof.f.vector[k]), bn256.Order) } anonsupport.temp = new(bn256.G1) var zeroes [64]byte anonsupport.temp.Unmarshal(zeroes[:]) for k := 0; k < 2*m; k++ { anonsupport.temp = new(bn256.G1).Add(anonsupport.temp, new(bn256.G1).ScalarMult(gparams.Gs.vector[k], anonsupport.f[k][1])) t := new(big.Int).Mod(new(big.Int).Mul(anonsupport.f[k][1], anonsupport.f[k][0]), bn256.Order) anonsupport.temp = new(bn256.G1).Add(anonsupport.temp, new(bn256.G1).ScalarMult(gparams.Hs.vector[k], t)) } t0 := new(bn256.G1).ScalarMult(gparams.Hs.vector[0+2*m], new(big.Int).Mod(new(big.Int).Mul(anonsupport.f[0][1], anonsupport.f[m][1]), bn256.Order)) t1 := new(bn256.G1).ScalarMult(gparams.Hs.vector[1+2*m], new(big.Int).Mod(new(big.Int).Mul(anonsupport.f[0][0], anonsupport.f[m][0]), bn256.Order)) anonsupport.temp = new(bn256.G1).Add(anonsupport.temp, t0) anonsupport.temp = new(bn256.G1).Add(anonsupport.temp, t1) // check whether we successfuly recover B^w * A stored := new(bn256.G1).Add(new(bn256.G1).ScalarMult(proof.B, anonsupport.w), proof.A) computed := new(bn256.G1).Add(anonsupport.temp, new(bn256.G1).ScalarMult(gparams.H, proof.z_A)) // for i := range proof.f.vector { // klog.V(2).Infof("proof.f %d %s\n", i, proof.f.vector[i].Text(16)) // } // klog.V(2).Infof("anonsupport.w %s\n", anonsupport.w.Text(16)) // klog.V(2).Infof("proof.z_A %s\n", proof.z_A.Text(16)) // klog.V(2).Infof("proof.B %s\n", proof.B.String()) // klog.V(2).Infof("proof.A %s\n", proof.A.String()) // klog.V(2).Infof("gparams.H %s\n", gparams.H.String()) // klog.V(2).Infof("stored %s\n", stored.String()) // klog.V(2).Infof("computed %s\n", computed.String()) if stored.String() != computed.String() { // if failed bail out // klog.Warning("Recover key failed B^w * A") return false } anonsupport.r = assemblepolynomials(anonsupport.f) // for i := 0; i < len(anonsupport.r); i++ { // klog.V(2).Infof("proof.r %d %s\n", i, anonsupport.r[i][0].Text(16)) // } // for i := 0; i < len(anonsupport.r); i++ { // klog.V(2).Infof("proof.q %d %s\n", i, anonsupport.r[i][1].Text(16)) // } anonsupport.CLnR = new(bn256.G1) anonsupport.CRnR = new(bn256.G1) anonsupport.CLnR.Unmarshal(zeroes[:]) anonsupport.CRnR.Unmarshal(zeroes[:]) for i := 0; i < N; i++ { anonsupport.CLnR = new(bn256.G1).Add(anonsupport.CLnR, new(bn256.G1).ScalarMult(s.CLn[i], anonsupport.r[i][0])) anonsupport.CRnR = new(bn256.G1).Add(anonsupport.CRnR, new(bn256.G1).ScalarMult(s.CRn[i], anonsupport.r[i][0])) } // klog.V(2).Infof("qCrnR %s\n", anonsupport.CRnR.String()) var p, q []*big.Int for i := 0; i < len(anonsupport.r); i++ { p = append(p, anonsupport.r[i][0]) q = append(q, anonsupport.r[i][1]) } // for i := range s.C { // klog.V(2).Infof("S.c %d %s \n", i, s.C[i].String()) // } // share code with proof generator for better testing C_p := Convolution(NewFieldVector(p), NewPointVector(s.C)) C_q := Convolution(NewFieldVector(q), NewPointVector(s.C)) y_p := Convolution(NewFieldVector(p), NewPointVector(s.Publickeylist)) y_q := Convolution(NewFieldVector(q), NewPointVector(s.Publickeylist)) // for i := range s.C { // klog.V(2).Infof("S.c %d %s \n", i, s.C[i].String()) // } // for i := range y_p.vector { // klog.V(2).Infof("y_p %d %s \n", i, y_p.vector[i].String()) // } // for i := range y_q.vector { // klog.V(2).Infof("y_q %d %s \n", i, y_q.vector[i].String()) // } for i := range C_p.vector { // assemble back anonsupport.CR = append(anonsupport.CR, [2]*bn256.G1{C_p.vector[i], C_q.vector[i]}) anonsupport.yR = append(anonsupport.yR, [2]*bn256.G1{y_p.vector[i], y_q.vector[i]}) } anonsupport.vPow = new(big.Int).SetUint64(1) anonsupport.C_XR = new(bn256.G1) anonsupport.y_XR = new(bn256.G1) anonsupport.C_XR.Unmarshal(zeroes[:]) anonsupport.y_XR.Unmarshal(zeroes[:]) for i := 0; i < N; i++ { anonsupport.C_XR.Add(new(bn256.G1).Set(anonsupport.C_XR), new(bn256.G1).ScalarMult(anonsupport.CR[i/2][i%2], anonsupport.vPow)) anonsupport.y_XR.Add(new(bn256.G1).Set(anonsupport.y_XR), new(bn256.G1).ScalarMult(anonsupport.yR[i/2][i%2], anonsupport.vPow)) if i > 0 { anonsupport.vPow = new(big.Int).Mod(new(big.Int).Mul(anonsupport.vPow, anonsupport.v), bn256.Order) // klog.V(2).Infof("vPow %s\n", anonsupport.vPow.Text(16)) } } // klog.V(2).Infof("vPow %s\n", anonsupport.vPow.Text(16)) // klog.V(2).Infof("v %s\n", anonsupport.v.Text(16)) anonsupport.wPow = new(big.Int).SetUint64(1) anonsupport.gR = new(bn256.G1) anonsupport.gR.Unmarshal(zeroes[:]) anonsupport.DR = new(bn256.G1) anonsupport.DR.Unmarshal(zeroes[:]) for i := 0; i < m; i++ { wPow_neg := new(big.Int).Mod(new(big.Int).Neg(anonsupport.wPow), bn256.Order) anonsupport.CLnR.Add(new(bn256.G1).Set(anonsupport.CLnR), new(bn256.G1).ScalarMult(proof.CLnG[i], wPow_neg)) anonsupport.CRnR.Add(new(bn256.G1).Set(anonsupport.CRnR), new(bn256.G1).ScalarMult(proof.CRnG[i], wPow_neg)) anonsupport.CR[0][0].Add(new(bn256.G1).Set(anonsupport.CR[0][0]), new(bn256.G1).ScalarMult(proof.C_0G[i], wPow_neg)) anonsupport.DR.Add(new(bn256.G1).Set(anonsupport.DR), new(bn256.G1).ScalarMult(proof.DG[i], wPow_neg)) anonsupport.yR[0][0].Add(new(bn256.G1).Set(anonsupport.yR[0][0]), new(bn256.G1).ScalarMult(proof.y_0G[i], wPow_neg)) anonsupport.gR.Add(new(bn256.G1).Set(anonsupport.gR), new(bn256.G1).ScalarMult(proof.gG[i], wPow_neg)) anonsupport.C_XR.Add(new(bn256.G1).Set(anonsupport.C_XR), new(bn256.G1).ScalarMult(proof.C_XG[i], wPow_neg)) anonsupport.y_XR.Add(new(bn256.G1).Set(anonsupport.y_XR), new(bn256.G1).ScalarMult(proof.y_XG[i], wPow_neg)) anonsupport.wPow = new(big.Int).Mod(new(big.Int).Mul(anonsupport.wPow, anonsupport.w), bn256.Order) } // klog.V(2).Infof("qCrnR %s\n", anonsupport.CRnR.String()) anonsupport.DR.Add(new(bn256.G1).Set(anonsupport.DR), new(bn256.G1).ScalarMult(s.D, anonsupport.wPow)) anonsupport.gR.Add(new(bn256.G1).Set(anonsupport.gR), new(bn256.G1).ScalarMult(gparams.G, anonsupport.wPow)) anonsupport.C_XR.Add(new(bn256.G1).Set(anonsupport.C_XR), new(bn256.G1).ScalarMult(gparams.G, new(big.Int).Mod(new(big.Int).Mul(new(big.Int).SetUint64(total_open_value), anonsupport.wPow), bn256.Order))) //anonAuxiliaries.C_XR = anonAuxiliaries.C_XR.add(Utils.g().mul(Utils.fee().mul(anonAuxiliaries.wPow))); // this line is new // at this point, these parameters are comparable with proof generator // klog.V(2).Infof("CLnR %s\n", anonsupport.CLnR.String()) // klog.V(2).Infof("qCrnR %s\n", anonsupport.CRnR.String()) // klog.V(2).Infof("DR %s\n", anonsupport.DR.String()) // klog.V(2).Infof("gR %s\n", anonsupport.gR.String()) // klog.V(2).Infof("C_XR %s\n", anonsupport.C_XR.String()) // klog.V(2).Infof("y_XR %s\n", anonsupport.y_XR.String()) protsupport.y = reducedhash(ConvertBigIntToByte(anonsupport.w)) protsupport.ys = append(protsupport.ys, new(big.Int).SetUint64(1)) protsupport.k = new(big.Int).SetUint64(1) for i := 1; i < 128; i++ { protsupport.ys = append(protsupport.ys, new(big.Int).Mod(new(big.Int).Mul(protsupport.ys[i-1], protsupport.y), bn256.Order)) protsupport.k = new(big.Int).Mod(new(big.Int).Add(protsupport.k, protsupport.ys[i]), bn256.Order) } protsupport.z = reducedhash(ConvertBigIntToByte(protsupport.y)) protsupport.zs = []*big.Int{new(big.Int).Exp(protsupport.z, new(big.Int).SetUint64(2), bn256.Order), new(big.Int).Exp(protsupport.z, new(big.Int).SetUint64(3), bn256.Order)} protsupport.zSum = new(big.Int).Mod(new(big.Int).Add(protsupport.zs[0], protsupport.zs[1]), bn256.Order) protsupport.zSum = new(big.Int).Mod(new(big.Int).Mul(new(big.Int).Set(protsupport.zSum), protsupport.z), bn256.Order) // klog.V(2).Infof("zsum %s\n ", protsupport.zSum.Text(16)) z_z0 := new(big.Int).Mod(new(big.Int).Sub(protsupport.z, protsupport.zs[0]), bn256.Order) protsupport.k = new(big.Int).Mod(new(big.Int).Mul(protsupport.k, z_z0), bn256.Order) proof_2_64, _ := new(big.Int).SetString("18446744073709551616", 10) zsum_pow := new(big.Int).Mod(new(big.Int).Mul(protsupport.zSum, proof_2_64), bn256.Order) zsum_pow = new(big.Int).Mod(new(big.Int).Sub(zsum_pow, protsupport.zSum), bn256.Order) protsupport.k = new(big.Int).Mod(new(big.Int).Sub(protsupport.k, zsum_pow), bn256.Order) protsupport.t = new(big.Int).Mod(new(big.Int).Sub(proof.that, protsupport.k), bn256.Order) // t = tHat - delta(y, z) // klog.V(2).Infof("that %s\n ", proof.that.Text(16)) // klog.V(2).Infof("zk %s\n ", protsupport.k.Text(16)) for i := 0; i < 64; i++ { protsupport.twoTimesZSquared[i] = new(big.Int).Mod(new(big.Int).Mul(protsupport.zs[0], new(big.Int).SetUint64(uint64(math.Pow(2, float64(i))))), bn256.Order) protsupport.twoTimesZSquared[64+i] = new(big.Int).Mod(new(big.Int).Mul(protsupport.zs[1], new(big.Int).SetUint64(uint64(math.Pow(2, float64(i))))), bn256.Order) } // for i := 0; i < 128; i++ { // klog.V(2).Infof("zsq %d %s", i, protsupport.twoTimesZSquared[i].Text(16)) // } x := new(big.Int) { var input []byte input = append(input, ConvertBigIntToByte(protsupport.z)...) // tie intermediates/commit input = append(input, proof.T_1.Marshal()...) input = append(input, proof.T_2.Marshal()...) x = reducedhash(input) } xsq := new(big.Int).Mod(new(big.Int).Mul(x, x), bn256.Order) protsupport.tEval = new(bn256.G1).ScalarMult(proof.T_1, x) protsupport.tEval.Add(new(bn256.G1).Set(protsupport.tEval), new(bn256.G1).ScalarMult(proof.T_2, xsq)) // klog.V(2).Infof("protsupport.tEval %s\n", protsupport.tEval.String()) proof_c_neg := new(big.Int).Mod(new(big.Int).Neg(proof.c), bn256.Order) sigmasupport.A_y = new(bn256.G1).Add(new(bn256.G1).ScalarMult(anonsupport.gR, proof.s_sk), new(bn256.G1).ScalarMult(anonsupport.yR[0][0], proof_c_neg)) sigmasupport.A_D = new(bn256.G1).Add(new(bn256.G1).ScalarMult(gparams.G, proof.s_r), new(bn256.G1).ScalarMult(s.D, proof_c_neg)) zs0_neg := new(big.Int).Mod(new(big.Int).Neg(protsupport.zs[0]), bn256.Order) left := new(bn256.G1).ScalarMult(anonsupport.DR, zs0_neg) left.Add(new(bn256.G1).Set(left), new(bn256.G1).ScalarMult(anonsupport.CRnR, protsupport.zs[1])) left = new(bn256.G1).ScalarMult(new(bn256.G1).Set(left), proof.s_sk) // TODO mid seems wrong amount_fees := new(big.Int).SetUint64(total_open_value) mid := new(bn256.G1).ScalarMult(G, new(big.Int).Mod(new(big.Int).Mul(amount_fees, anonsupport.wPow), bn256.Order)) mid.Add(new(bn256.G1).Set(mid), new(bn256.G1).Set(anonsupport.CR[0][0])) right := new(bn256.G1).ScalarMult(mid, zs0_neg) right.Add(new(bn256.G1).Set(right), new(bn256.G1).ScalarMult(anonsupport.CLnR, protsupport.zs[1])) right = new(bn256.G1).ScalarMult(new(bn256.G1).Set(right), proof_c_neg) sigmasupport.A_b = new(bn256.G1).ScalarMult(gparams.G, proof.s_b) temp := new(bn256.G1).Add(left, right) sigmasupport.A_b.Add(new(bn256.G1).Set(sigmasupport.A_b), temp) //- sigmaAuxiliaries.A_b = Utils.g().mul(proof.s_b).add(anonAuxiliaries.DR.mul(zetherAuxiliaries.zs[0].neg()).add(anonAuxiliaries.CRnR.mul(zetherAuxiliaries.zs[1])).mul(proof.s_sk).add(anonAuxiliaries.CR[0][0] .mul(zetherAuxiliaries.zs[0].neg()).add(anonAuxiliaries.CLnR.mul(zetherAuxiliaries.zs[1])).mul(proof.c.neg()))); //+ sigmaAuxiliaries.A_b = Utils.g().mul(proof.s_b).add(anonAuxiliaries.DR.mul(zetherAuxiliaries.zs[0].neg()).add(anonAuxiliaries.CRnR.mul(zetherAuxiliaries.zs[1])).mul(proof.s_sk).add(anonAuxiliaries.CR[0][0].add(Utils.g().mul(Utils.fee().mul(anonAuxiliaries.wPow))).mul(zetherAuxiliaries.zs[0].neg()).add(anonAuxiliaries.CLnR.mul(zetherAuxiliaries.zs[1])).mul(proof.c.neg()))); //var fees bn256.G1 //fees.ScalarMult(G, new(big.Int).SetInt64(int64( -1 ))) //anonsupport.C_XR.Add( new(bn256.G1).Set(anonsupport.C_XR), &fees) sigmasupport.A_X = new(bn256.G1).Add(new(bn256.G1).ScalarMult(anonsupport.y_XR, proof.s_r), new(bn256.G1).ScalarMult(anonsupport.C_XR, proof_c_neg)) proof_s_b_neg := new(big.Int).Mod(new(big.Int).Neg(proof.s_b), bn256.Order) sigmasupport.A_t = new(bn256.G1).ScalarMult(gparams.G, protsupport.t) sigmasupport.A_t.Add(new(bn256.G1).Set(sigmasupport.A_t), new(bn256.G1).Neg(protsupport.tEval)) sigmasupport.A_t = new(bn256.G1).ScalarMult(sigmasupport.A_t, new(big.Int).Mod(new(big.Int).Mul(proof.c, anonsupport.wPow), bn256.Order)) sigmasupport.A_t.Add(new(bn256.G1).Set(sigmasupport.A_t), new(bn256.G1).ScalarMult(gparams.H, proof.s_tau)) sigmasupport.A_t.Add(new(bn256.G1).Set(sigmasupport.A_t), new(bn256.G1).ScalarMult(gparams.G, proof_s_b_neg)) // klog.V(2).Infof("t %s\n ", protsupport.t.Text(16)) // klog.V(2).Infof("protsupport.tEval %s\n", protsupport.tEval.String()) { point := HeightToPoint(height) sigmasupport.A_u = new(bn256.G1).ScalarMult(point, proof.s_sk) sigmasupport.A_u.Add(new(bn256.G1).Set(sigmasupport.A_u), new(bn256.G1).ScalarMult(proof.u, proof_c_neg)) point = HeightToPoint(height+BLOCK_BATCH_SIZE) sigmasupport.A_u1 = new(bn256.G1).ScalarMult(point, proof.s_sk) sigmasupport.A_u1.Add(new(bn256.G1).Set(sigmasupport.A_u1), new(bn256.G1).ScalarMult(proof.u1, proof_c_neg)) } // klog.V(2).Infof("A_y %s\n", sigmasupport.A_y.String()) // klog.V(2).Infof("A_D %s\n", sigmasupport.A_D.String()) // klog.V(2).Infof("A_b %s\n", sigmasupport.A_b.String()) // klog.V(2).Infof("A_X %s\n", sigmasupport.A_X.String()) // klog.V(2).Infof("A_t %s\n", sigmasupport.A_t.String()) // klog.V(2).Infof("A_u %s\n", sigmasupport.A_u.String()) { var input []byte input = append(input, ConvertBigIntToByte(x)...) input = append(input, sigmasupport.A_y.Marshal()...) input = append(input, sigmasupport.A_D.Marshal()...) input = append(input, sigmasupport.A_b.Marshal()...) input = append(input, sigmasupport.A_X.Marshal()...) input = append(input, sigmasupport.A_t.Marshal()...) input = append(input, sigmasupport.A_u.Marshal()...) input = append(input, sigmasupport.A_u1.Marshal()...) // fmt.Printf("C calculation expected %s actual %s\n",proof.c.Text(16), reducedhash(input).Text(16) ) if reducedhash(input).Text(16) != proof.c.Text(16) { // we must fail here // klog.Warning("C calculation failed") return false } } o := reducedhash(ConvertBigIntToByte(proof.c)) u_x := new(bn256.G1).ScalarMult(gparams.H, o) var hPrimes []*bn256.G1 hPrimeSum := new(bn256.G1) hPrimeSum.Unmarshal(zeroes[:]) for i := 0; i < 128; i++ { hPrimes = append(hPrimes, new(bn256.G1).ScalarMult(gparams.Hs.vector[i], new(big.Int).ModInverse(protsupport.ys[i], bn256.Order))) // klog.V(2).Infof("hPrimes %d %s\n", i, hPrimes[i].String()) tmp := new(big.Int).Mod(new(big.Int).Mul(protsupport.ys[i], protsupport.z), bn256.Order) tmp = new(big.Int).Mod(new(big.Int).Add(tmp, protsupport.twoTimesZSquared[i]), bn256.Order) hPrimeSum = new(bn256.G1).Add(hPrimeSum, new(bn256.G1).ScalarMult(hPrimes[i], tmp)) } P := new(bn256.G1).Add(proof.BA, new(bn256.G1).ScalarMult(proof.BS, x)) P = new(bn256.G1).Add(P, new(bn256.G1).ScalarMult(gparams.GSUM, new(big.Int).Mod(new(big.Int).Neg(protsupport.z), bn256.Order))) P = new(bn256.G1).Add(P, hPrimeSum) P = new(bn256.G1).Add(P, new(bn256.G1).ScalarMult(gparams.H, new(big.Int).Mod(new(big.Int).Neg(proof.mu), bn256.Order))) P = new(bn256.G1).Add(P, new(bn256.G1).ScalarMult(u_x, new(big.Int).Mod(new(big.Int).Set(proof.that), bn256.Order))) // klog.V(2).Infof("P %s\n", P.String()) if !proof.ip.Verify(hPrimes, u_x, P, o, gparams) { // klog.Warning("inner proof failed") return false } // klog.V(2).Infof("proof %s\n", proof.String()) // panic("proof successful") // klog.V(2).Infof("Proof successful verified\n") return true } /* func (proof *Proof) String() string { klog.V(1).Infof("proof BA %s\n", proof.BA.String()) klog.V(1).Infof("proof BS %s\n", proof.BS.String()) klog.V(1).Infof("proof A %s\n", proof.A.String()) klog.V(1).Infof("proof B %s\n", proof.B.String()) for i := range proof.CLnG { klog.V(1).Infof("CLnG %d %s \n", i, proof.CLnG[i].String()) } for i := range proof.CRnG { klog.V(1).Infof("CRnG %d %s \n", i, proof.CRnG[i].String()) } for i := range proof.C_0G { klog.V(1).Infof("C_0G %d %s \n", i, proof.C_0G[i].String()) } for i := range proof.DG { klog.V(1).Infof("DG %d %s \n", i, proof.DG[i].String()) } for i := range proof.y_0G { klog.V(1).Infof("y_0G %d %s \n", i, proof.y_0G[i].String()) } for i := range proof.gG { klog.V(1).Infof("gG %d %s \n", i, proof.gG[i].String()) } for i := range proof.C_XG { klog.V(1).Infof("C_XG %d %s \n", i, proof.C_XG[i].String()) } for i := range proof.y_XG { klog.V(1).Infof("y_XG %d %s \n", i, proof.y_XG[i].String()) } //for i := range proof.tCommits.vector { // klog.V(1).Infof("tCommits %d %s \n", i, proof.tCommits.vector[i].String()) //} klog.V(1).Infof("proof z_A %s\n", proof.z_A.Text(16)) klog.V(1).Infof("proof that %s\n", proof.that.Text(16)) klog.V(1).Infof("proof mu %s\n", proof.mu.Text(16)) klog.V(1).Infof("proof C %s\n", proof.c.Text(16)) klog.V(1).Infof("proof s_sk %s\n", proof.s_sk.Text(16)) klog.V(1).Infof("proof s_r %s\n", proof.s_r.Text(16)) klog.V(1).Infof("proof s_b %s\n", proof.s_b.Text(16)) klog.V(1).Infof("proof s_tau %s\n", proof.s_tau.Text(16)) return "" } */ func assemblepolynomials(f [][2]*big.Int) [][2]*big.Int { m := len(f) / 2 N := int(math.Pow(2, float64(m))) result := make([][2]*big.Int, N, N) for i := 0; i < 2; i++ { half := recursivepolynomials(i*m, (i+1)*m, new(big.Int).SetInt64(1), f) for j := 0; j < N; j++ { result[j][i] = half[j] } } return result } func recursivepolynomials(baseline, current int, accum *big.Int, f [][2]*big.Int) []*big.Int { size := int(math.Pow(2, float64(current-baseline))) result := make([]*big.Int, size, size) if current == baseline { result[0] = accum return result } current-- left := recursivepolynomials(baseline, current, new(big.Int).Mod(new(big.Int).Mul(accum, f[current][0]), bn256.Order), f) right := recursivepolynomials(baseline, current, new(big.Int).Mod(new(big.Int).Mul(accum, f[current][1]), bn256.Order), f) for i := 0; i < size/2; i++ { result[i] = left[i] result[i+size/2] = right[i] } return result }