// Copyright 2017-2021 DERO Project. All rights reserved. // Use of this source code in any form is governed by RESEARCH license. // license can be found in the LICENSE file. // GPG: 0F39 E425 8C65 3947 702A 8234 08B2 0360 A03A 9DE8 // // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY // EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF // MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL // THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, // STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF // THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. package blockchain import "fmt" import "bytes" import "sort" import "sync" import "math/big" import "math/rand" import "runtime/debug" import "encoding/binary" import "golang.org/x/xerrors" import "golang.org/x/time/rate" // this file creates the blobs which can be used to mine new blocks import "github.com/deroproject/derohe/block" import "github.com/deroproject/derohe/config" import "github.com/deroproject/derohe/cryptography/crypto" import "github.com/deroproject/derohe/globals" import "github.com/deroproject/derohe/rpc" import "github.com/deroproject/derohe/errormsg" import "github.com/deroproject/derohe/transaction" import "github.com/deroproject/graviton" const TX_VALIDITY_HEIGHT = 11 // structure used to rank/sort blocks on a number of factors type BlockScore struct { BLID crypto.Hash //MiniCount int Height int64 // block height Cumulative_Difficulty *big.Int // used to score blocks on cumulative difficulty } // Heighest node weight is ordered first, the condition is reverted see eg. at https://golang.org/pkg/sort/#Slice // if weights are equal, nodes are sorted by their block ids which will never collide , hopefullly // block ids are sorted by lowest byte first diff func sort_descending_by_cumulative_difficulty(tips_scores []BlockScore) { sort.Slice(tips_scores, func(i, j int) bool { if tips_scores[i].Cumulative_Difficulty.Cmp(tips_scores[j].Cumulative_Difficulty) != 0 { // if diffculty mismatch use them if tips_scores[i].Cumulative_Difficulty.Cmp(tips_scores[j].Cumulative_Difficulty) > 0 { // if i diff > j diff return true } else { return false } } else { // cumulative difficulty is same, we must check minerblocks return bytes.Compare(tips_scores[i].BLID[:], tips_scores[j].BLID[:]) == -1 } }) } func sort_ascending_by_height(tips_scores []BlockScore) { // base is the lowest height sort.Slice(tips_scores, func(i, j int) bool { return tips_scores[i].Height < tips_scores[j].Height }) } // this will sort the tips based on cumulative difficulty and/or block ids // the tips will sorted in descending order func (chain *Blockchain) SortTips(tips []crypto.Hash) (sorted []crypto.Hash) { if len(tips) == 0 { panic("tips cannot be 0") } if len(tips) == 1 { sorted = []crypto.Hash{tips[0]} return } tips_scores := make([]BlockScore, len(tips), len(tips)) for i := range tips { tips_scores[i].BLID = tips[i] tips_scores[i].Cumulative_Difficulty = chain.Load_Block_Cumulative_Difficulty(tips[i]) } sort_descending_by_cumulative_difficulty(tips_scores) for i := range tips_scores { sorted = append(sorted, tips_scores[i].BLID) } return } //NOTE: this function is quite big since we do a lot of things in preparation of next blocks func (chain *Blockchain) Create_new_miner_block(miner_address rpc.Address) (cbl *block.Complete_Block, bl block.Block, err error) { //chain.Lock() //defer chain.Unlock() cbl = &block.Complete_Block{} topoheight := chain.Load_TOPO_HEIGHT() toporecord, err := chain.Store.Topo_store.Read(topoheight) if err != nil { return } ss, err := chain.Store.Balance_store.LoadSnapshot(toporecord.State_Version) if err != nil { return } balance_tree, err := ss.GetTree(config.BALANCE_TREE) if err != nil { return } var tips []crypto.Hash // lets fill in the tips from miniblocks, list is already sorted if mbls := chain.MiniBlocks.GetAllTipsAtHeight(chain.Get_Height() + 1); len(mbls) > 0 { mbls = block.MiniBlocks_SortByDistanceDesc(mbls) for _, mbl := range mbls { tips = tips[:0] gens := block.GetGenesisFromMiniBlock(mbl) if len(gens) <= 0 { // if tip cannot be resolved to genesis skip it continue } var tip crypto.Hash copy(tip[:], gens[0].Check[8:8+12]) if ehash, ok := chain.ExpandMiniBlockTip(tip); ok { tips = append(tips, ehash) } else { continue } if gens[0].PastCount == 2 { copy(tip[:], gens[0].Check[8+12:]) if ehash, ok := chain.ExpandMiniBlockTip(tip); ok { tips = append(tips, ehash) } else { continue } } break } } if len(tips) == 0 { tips = chain.SortTips(chain.Get_TIPS()) } for i := range tips { if len(bl.Tips) < 2 { //only 2 tips max var check_tips []crypto.Hash check_tips = append(check_tips, bl.Tips...) check_tips = append(check_tips, tips[i]) if chain.CheckDagStructure(check_tips) { // avoid any tips which fail structure test bl.Tips = append(bl.Tips, tips[i]) } } } height := chain.Calculate_Height_At_Tips(bl.Tips) // we are 1 higher than previous highest tip var tx_hash_list_included []crypto.Hash // these tx will be included ( due to block size limit ) sizeoftxs := uint64(0) // size of all non coinbase tx included within this block //fees_collected := uint64(0) _ = sizeoftxs // add upto 100 registration tx each registration tx is 99 bytes, so 100 tx will take 9900 bytes or 10KB { tx_hash_list_sorted := chain.Regpool.Regpool_List_TX() // hash of all tx expected to be included within this block , sorted by fees for i := range tx_hash_list_sorted { tx := chain.Regpool.Regpool_Get_TX(tx_hash_list_sorted[i]) if tx != nil { _, err = balance_tree.Get(tx.MinerAddress[:]) if err != nil { if xerrors.Is(err, graviton.ErrNotFound) { // address needs registration cbl.Txs = append(cbl.Txs, tx) tx_hash_list_included = append(tx_hash_list_included, tx_hash_list_sorted[i]) } else { return } } } } } hf_version := chain.Get_Current_Version_at_Height(height) //rlog.Infof("Total tx in pool %d", len(tx_hash_list_sorted)) //reachable_key_images := chain.BuildReachabilityKeyImages(dbtx, &bl) // this requires only bl.Tips // select 10% tx based on fees // select 90% tx randomly // random selection helps us to easily reach 80 TPS // first of lets find the tx fees collected by consuming txs from mempool tx_hash_list_sorted := chain.Mempool.Mempool_List_TX_SortedInfo() // hash of all tx expected to be included within this block , sorted by fees var pre_check cbl_verify // used to verify sanity of new block i := 0 for ; i < len(tx_hash_list_sorted); i++ { if (sizeoftxs + tx_hash_list_sorted[i].Size) > (10*config.STARGATE_HE_MAX_BLOCK_SIZE)/100 { // limit block to max possible break } tx := chain.Mempool.Mempool_Get_TX(tx_hash_list_sorted[i].Hash) if tx != nil { if int64(tx.Height) < height { // fmt.Printf("sanity back %d(%d) nonce check %s\n", height - int64(tx.Height), TX_VALIDITY_HEIGHT, chain.Verify_Transaction_NonCoinbase_CheckNonce_Tips(hf_version,tx,bl.Tips) ) if height-int64(tx.Height) < TX_VALIDITY_HEIGHT { if nil == chain.Verify_Transaction_NonCoinbase_CheckNonce_Tips(hf_version, tx, bl.Tips, false) { if nil == pre_check.check(tx, false) { pre_check.check(tx, true) //rlog.Tracef(1, "Adding Top Sorted tx %s to Complete_Block current size %.2f KB max possible %.2f KB\n", tx_hash_list_sorted[i].Hash, float32(sizeoftxs+tx_hash_list_sorted[i].Size)/1024.0, float32(config.STARGATE_HE_MAX_BLOCK_SIZE)/1024.0) sizeoftxs += tx_hash_list_sorted[i].Size cbl.Txs = append(cbl.Txs, tx) tx_hash_list_included = append(tx_hash_list_included, tx_hash_list_sorted[i].Hash) } } } } } } // any left over transactions, should be randomly selected tx_hash_list_sorted = tx_hash_list_sorted[i:] // do random shuffling, can we get away with len/2 random shuffling rand.Shuffle(len(tx_hash_list_sorted), func(i, j int) { tx_hash_list_sorted[i], tx_hash_list_sorted[j] = tx_hash_list_sorted[j], tx_hash_list_sorted[i] }) // if we were crossing limit, transactions would be randomly selected // otherwise they will sorted by fees // now select as much as possible for i := range tx_hash_list_sorted { if (sizeoftxs + tx_hash_list_sorted[i].Size) > (config.STARGATE_HE_MAX_BLOCK_SIZE) { // limit block to max possible break } tx := chain.Mempool.Mempool_Get_TX(tx_hash_list_sorted[i].Hash) if tx != nil { if int64(tx.Height) < height { if height-int64(tx.Height) < TX_VALIDITY_HEIGHT { if nil == chain.Verify_Transaction_NonCoinbase_CheckNonce_Tips(hf_version, tx, bl.Tips, false) { if nil == pre_check.check(tx, false) { pre_check.check(tx, true) //rlog.Tracef(1, "Adding Random tx %s to Complete_Block current size %.2f KB max possible %.2f KB\n", tx_hash_list_sorted[i].Hash, float32(sizeoftxs+tx_hash_list_sorted[i].Size)/1024.0, float32(config.STARGATE_HE_MAX_BLOCK_SIZE)/1024.0) sizeoftxs += tx_hash_list_sorted[i].Size cbl.Txs = append(cbl.Txs, tx) tx_hash_list_included = append(tx_hash_list_included, tx_hash_list_sorted[i].Hash) } } } } } } // collect tx list + their fees // now we have all major parts of block, assemble the block bl.Major_Version = uint64(chain.Get_Current_Version_at_Height(height)) bl.Minor_Version = uint64(chain.Get_Ideal_Version_at_Height(height)) // This is used for hard fork voting, bl.Height = uint64(height) bl.Timestamp = uint64(globals.Time().UTC().UnixMilli()) bl.Miner_TX.Version = 1 bl.Miner_TX.TransactionType = transaction.COINBASE // what about unregistered users copy(bl.Miner_TX.MinerAddress[:], miner_address.Compressed()) for i := range bl.Tips { // adjust time stamp, only if someone mined a block in extreme precision if chain.Load_Block_Timestamp(bl.Tips[i]) >= uint64(globals.Time().UTC().UnixMilli()) { bl.Timestamp = chain.Load_Block_Timestamp(bl.Tips[i]) + 1 } } // check whether the miner address is registered _, err = balance_tree.Get(bl.Miner_TX.MinerAddress[:]) if err != nil { if xerrors.Is(err, graviton.ErrNotFound) { // address needs registration err = fmt.Errorf("miner address is not registered") return } else { return } } //bl.Prev_Hash = top_hash for i := range tx_hash_list_included { bl.Tx_hashes = append(bl.Tx_hashes, tx_hash_list_included[i]) } // lets fill in the miniblocks, list is already sorted if mbls := chain.MiniBlocks.GetAllTipsAtHeight(height); len(mbls) > 0 { mbls = block.MiniBlocks_SortByDistanceDesc(mbls) max_distance := uint32(0) tipcount := 0 for _, mbl := range mbls { if tipcount == 2 { //we can only support max 2 tips break } gens := block.GetGenesisFromMiniBlock(mbl) if len(gens) <= 0 { // if tip cannot be resolved to genesis skip it continue } gens_filtered := block.MiniBlocks_FilterOnlyGenesis(gens, bl.Tips) if len(gens_filtered) <= 0 { // no valid genesis having same tips continue } if len(gens) != len(gens_filtered) { // more than 1 genesis, with some not pointing to same tips continue } if max_distance < mbl.Distance { max_distance = mbl.Distance } if mbl.Genesis && max_distance-mbl.Distance > miniblock_genesis_distance { // only 0 distance is supported for genesis continue } if !mbl.Genesis && max_distance-mbl.Distance > miniblock_normal_distance { // only 3 distance is supported continue } history := block.GetEntireMiniBlockHistory(mbl) if !mbl.Genesis && len(history) < 2 { logger.V(1).Error(nil, "history missing. this should never occur", "mbl", fmt.Sprintf("%+v", mbl)) continue } bl.MiniBlocks = append(bl.MiniBlocks, history...) tipcount++ } if len(bl.MiniBlocks) > 1 { // we need to unique and sort them by time bl.MiniBlocks = block.MiniBlocks_SortByTimeAsc(block.MiniBlocks_Unique(bl.MiniBlocks)) } } cbl.Bl = &bl return } // func ConvertBlockToMiniblock(bl block.Block, miniblock_miner_address rpc.Address) (mbl block.MiniBlock) { mbl.Version = 1 if len(bl.Tips) == 0 { panic("Tips cannot be zero") } mbl.Timestamp = uint64(globals.Time().UTC().UnixMilli()) if len(bl.MiniBlocks) == 0 { mbl.Genesis = true mbl.PastCount = byte(len(bl.Tips)) for i := range bl.Tips { mbl.Past[i] = binary.BigEndian.Uint32(bl.Tips[i][:]) } } else { tmp_collection := block.CreateMiniBlockCollection() for _, tmbl := range bl.MiniBlocks { if err, ok := tmp_collection.InsertMiniBlock(tmbl); !ok { logger.Error(err, "error converting block to miniblock") panic("not possible, logical flaw") } } tips := tmp_collection.GetAllTips() if len(tips) > 2 || len(tips) == 0 { logger.Error(nil, "block contains miniblocks for more tips than possible", "count", len(tips)) panic("not possible, logical flaw") } for i, tip := range tips { mbl.PastCount++ tiphash := tip.GetHash() mbl.Past[i] = binary.BigEndian.Uint32(tiphash[:]) if tip.Timestamp >= uint64(globals.Time().UTC().UnixMilli()) { mbl.Timestamp = tip.Timestamp + 1 } } } if mbl.Genesis { binary.BigEndian.PutUint64(mbl.Check[:], bl.Height) copy(mbl.Check[8:], bl.Tips[0][0:12]) if len(bl.Tips) == 2 { copy(mbl.Check[8+12:], bl.Tips[1][0:12]) } } else { txshash := bl.GetTXSHash() block_header_hash := bl.GetHashWithoutMiniBlocks() for i := range mbl.Check { mbl.Check[i] = txshash[i] ^ block_header_hash[i] } } miner_address_hashed_key := graviton.Sum(miniblock_miner_address.Compressed()) copy(mbl.KeyHash[:], miner_address_hashed_key[:]) globals.Global_Random.Read(mbl.Nonce[:]) // fill with randomness return } // returns a new block template ready for mining // block template has the following format // miner block header in hex + // miner tx in hex + // 2 bytes ( inhex 4 bytes for number of tx ) // tx hashes that follow var cache_block block.Block var cache_block_mutex sync.Mutex func (chain *Blockchain) Create_new_block_template_mining(miniblock_miner_address rpc.Address) (bl block.Block, mbl block.MiniBlock, miniblock_blob string, reserved_pos int, err error) { cache_block_mutex.Lock() defer cache_block_mutex.Unlock() if (cache_block.Timestamp+100) < (uint64(globals.Time().UTC().UnixMilli())) || (cache_block.Timestamp > 0 && int64(cache_block.Height) != chain.Get_Height()+1) { if chain.simulator { _, bl, err = chain.Create_new_miner_block(miniblock_miner_address) // simulator lets you test everything } else { _, bl, err = chain.Create_new_miner_block(chain.integrator_address) } if err != nil { logger.V(1).Error(err, "block template error ") return } cache_block = bl // setup block cache for 100 msec chain.mining_blocks_cache.Add(fmt.Sprintf("%d", cache_block.Timestamp), string(bl.Serialize())) } else { bl = cache_block } mbl = ConvertBlockToMiniblock(bl, miniblock_miner_address) var miner_hash crypto.Hash copy(miner_hash[:], mbl.KeyHash[:]) if !chain.IsAddressHashValid(false, miner_hash) { logger.V(3).Error(err, "unregistered miner %s", miner_hash) err = fmt.Errorf("unregistered miner or you need to wait 15 mins") return } miniblock_blob = fmt.Sprintf("%x", mbl.Serialize()) return } // rate limiter is deployed, in case RPC is exposed over internet // someone should not be just giving fake inputs and delay chain syncing var accept_limiter = rate.NewLimiter(1.0, 4) // 1 block per sec, burst of 4 blocks is okay var accept_lock = sync.Mutex{} var duplicate_height_check = map[uint64]bool{} // accept work given by us // we should verify that the transaction list supplied back by the miner exists in the mempool // otherwise the miner is trying to attack the network func (chain *Blockchain) Accept_new_block(tstamp uint64, miniblock_blob []byte) (mblid crypto.Hash, blid crypto.Hash, result bool, err error) { if globals.Arguments["--sync-node"].(bool) { logger.Error(fmt.Errorf("Mining is deactivated since daemon is running with --sync-mode, please check program options."), "") return mblid, blid, false, fmt.Errorf("Please deactivate --sync-node option before mining") } accept_lock.Lock() defer accept_lock.Unlock() cbl := &block.Complete_Block{} bl := block.Block{} var mbl block.MiniBlock //logger.Infof("Incoming block for accepting %x", block_template) // safety so if anything wrong happens, verification fails defer func() { if r := recover(); r != nil { logger.V(1).Error(nil, "Recovered while accepting new block", "r", r, "stack", debug.Stack()) err = fmt.Errorf("Error while parsing block") } }() if err = mbl.Deserialize(miniblock_blob); err != nil { logger.V(1).Error(err, "Error Deserializing blob") return } // now lets locate the actual block from our cache if block_data, found := chain.mining_blocks_cache.Get(fmt.Sprintf("%d", tstamp)); found { if err = bl.Deserialize([]byte(block_data.(string))); err != nil { logger.V(1).Error(err, "Error parsing submitted work block template ", "template", block_data) return } } else { logger.V(1).Error(nil, "Job not found in cache", "jobid", fmt.Sprintf("%d", tstamp), "tstamp", uint64(globals.Time().UTC().UnixMilli())) err = fmt.Errorf("job not found in cache") return } //fmt.Printf("received miniblock %x block %x\n", miniblock_blob, bl.Serialize()) // lets try to check pow to detect whether the miner is cheating if !chain.VerifyMiniblockPoW(&bl, mbl) { logger.V(1).Error(err, "Error ErrInvalidPoW ") err = errormsg.ErrInvalidPoW return } var miner_hash crypto.Hash copy(miner_hash[:], mbl.KeyHash[:]) if !chain.IsAddressHashValid(true, miner_hash) { logger.V(3).Error(err, "unregistered miner %s", miner_hash) err = fmt.Errorf("unregistered miner or you need to wait 15 mins") return } // if we reach here, everything looks ok bl.MiniBlocks = append(bl.MiniBlocks, mbl) if err = chain.Verify_MiniBlocks(bl); err != nil { fmt.Printf("verifying miniblocks %s\n", err) return } mblid = mbl.GetHash() if err1, ok := chain.InsertMiniBlock(mbl); ok { //fmt.Printf("miniblock %s inserted successfully, total %d\n",mblid,len(chain.MiniBlocks.Collection) ) result = true } else { logger.V(1).Error(err1, "miniblock insertion failed", "mbl", fmt.Sprintf("%+v", mbl)) err = err1 return } cache_block_mutex.Lock() cache_block.Timestamp = 0 // expire cache block cache_block_mutex.Unlock() // notify peers, we have a miniblock and return to miner if !chain.simulator { // if not in simulator mode, relay miniblock to the chain go chain.P2P_MiniBlock_Relayer(mbl, 0) } // if a duplicate block is being sent, reject the block if _, ok := duplicate_height_check[bl.Height]; ok { logger.V(1).Error(nil, "Block %s rejected by chain due to duplicate hwork.", "blid", bl.GetHash()) err = fmt.Errorf("Error duplicate work") return } // fast check dynamic consensus rules // if it passes then this miniblock completes the puzzle (if other consensus rules allow) if scraperr := chain.Check_Dynamism(bl.MiniBlocks); scraperr != nil { logger.V(3).Error(scraperr, "dynamism check failed ") return } // since we have passed dynamic rules, build a full block and try adding to chain // lets build up the complete block // collect tx list + their fees for i := range bl.Tx_hashes { var tx *transaction.Transaction if tx = chain.Mempool.Mempool_Get_TX(bl.Tx_hashes[i]); tx != nil { cbl.Txs = append(cbl.Txs, tx) continue } else if tx = chain.Regpool.Regpool_Get_TX(bl.Tx_hashes[i]); tx != nil { cbl.Txs = append(cbl.Txs, tx) continue } var tx_bytes []byte if tx_bytes, err = chain.Store.Block_tx_store.ReadTX(bl.Tx_hashes[i]); err != nil { return } tx = &transaction.Transaction{} if err = tx.Deserialize(tx_bytes); err != nil { logger.V(1).Error(err, "Tx not found in pool or DB, rejecting submitted block", "txid", bl.Tx_hashes[i].String()) return } cbl.Txs = append(cbl.Txs, tx) } cbl.Bl = &bl // the block is now complete, lets try to add it to chain if !accept_limiter.Allow() { // if rate limiter allows, then add block to chain logger.Info("Block rejected by chain.", "blid", bl.GetHash()) return } blid = bl.GetHash() var result_block bool err, result_block = chain.Add_Complete_Block(cbl) if result_block { duplicate_height_check[bl.Height] = true logger.V(1).Info("Block successfully accepted, Notifying Network", "blid", bl.GetHash(), "height", bl.Height) if !chain.simulator { // if not in simulator mode, relay block to the chain chain.P2P_Block_Relayer(cbl, 0) // lets relay the block to network } } else { logger.V(1).Error(err, "Block Rejected", "blid", bl.GetHash()) return } return } // this expands the 12 byte tip to full 32 byte tip // it is not used in consensus but used by p2p for safety checks func (chain *Blockchain) ExpandMiniBlockTip(hash crypto.Hash) (result crypto.Hash, found bool) { tips := chain.Get_TIPS() for i := range tips { if bytes.Equal(hash[:12], tips[i][:12]) { copy(result[:], tips[i][:]) return result, true } } // the block may just have been mined, so we evaluate roughly 25 past blocks to cross check max_topo := chain.Load_TOPO_HEIGHT() tries := 0 for i := max_topo; i >= 0 && tries < 25; i-- { blhash, err := chain.Load_Block_Topological_order_at_index(i) if err == nil { if bytes.Equal(hash[:12], blhash[:12]) { copy(result[:], blhash[:]) return result, true } } tries++ } return result, false } // it is USED by consensus and p2p whether the miners has is valid func (chain *Blockchain) IsAddressHashValid(skip_cache bool, hashes ...crypto.Hash) (found bool) { if skip_cache { for _, hash := range hashes { // check whether everything could be satisfied via cache if _, found := chain.cache_IsAddressHashValid.Get(fmt.Sprintf("%s", hash)); !found { goto hard_way // do things the hard way } } return true } hard_way: // the block may just have been mined, so we evaluate roughly 25 past blocks to cross check max_topo := chain.Load_TOPO_HEIGHT() if max_topo > 25 { // we can lag a bit here, basically atleast around 10 mins lag max_topo -= 25 } toporecord, err := chain.Store.Topo_store.Read(max_topo) if err != nil { return } ss, err := chain.Store.Balance_store.LoadSnapshot(toporecord.State_Version) if err != nil { return } var balance_tree *graviton.Tree if balance_tree, err = ss.GetTree(config.BALANCE_TREE); err != nil { return } for _, hash := range hashes { bits, _, _, err := balance_tree.GetKeyValueFromHash(hash[0:16]) if err != nil || bits >= 120 { return } chain.cache_IsAddressHashValid.Add(fmt.Sprintf("%s", hash), true) // set in cache } return true }