// Package bn256 implements a particular bilinear group at the 128-bit security // level. // // Bilinear groups are the basis of many of the new cryptographic protocols that // have been proposed over the past decade. They consist of a triplet of groups // (G₁, G₂ and GT) such that there exists a function e(g₁ˣ,g₂ʸ)=gTˣʸ (where gₓ // is a generator of the respective group). That function is called a pairing // function. // // This package specifically implements the Optimal Ate pairing over a 256-bit // Barreto-Naehrig curve as described in // http://cryptojedi.org/papers/dclxvi-20100714.pdf. Its output is compatible // with the implementation described in that paper. package bn256 import ( "crypto/rand" "errors" "io" "math/big" ) func randomK(r io.Reader) (k *big.Int, err error) { for { k, err = rand.Int(r, Order) if k.Sign() > 0 || err != nil { return } } } // G1 is an abstract cyclic group. The zero value is suitable for use as the // output of an operation, but cannot be used as an input. type G1 struct { p *curvePoint } // RandomG1 returns x and g₁ˣ where x is a random, non-zero number read from r. func RandomG1(r io.Reader) (*big.Int, *G1, error) { k, err := randomK(r) if err != nil { return nil, nil, err } return k, new(G1).ScalarBaseMult(k), nil } func (e *G1) String() string { return "bn256.G1" + e.p.String() } // ScalarBaseMult sets e to g*k where g is the generator of the group and then // returns e. func (e *G1) ScalarBaseMult(k *big.Int) *G1 { if e.p == nil { e.p = &curvePoint{} } e.p.Mul(curveGen, k) return e } // ScalarMult sets e to a*k and then returns e. func (e *G1) ScalarMult(a *G1, k *big.Int) *G1 { if e.p == nil { e.p = &curvePoint{} } e.p.Mul(a.p, k) return e } // Add sets e to a+b and then returns e. func (e *G1) Add(a, b *G1) *G1 { if e.p == nil { e.p = &curvePoint{} } e.p.Add(a.p, b.p) return e } // Neg sets e to -a and then returns e. func (e *G1) Neg(a *G1) *G1 { if e.p == nil { e.p = &curvePoint{} } e.p.Neg(a.p) return e } // Set sets e to a and then returns e. func (e *G1) Set(a *G1) *G1 { if e.p == nil { e.p = &curvePoint{} } e.p.Set(a.p) return e } // Marshal converts e to a byte slice. func (e *G1) Marshal() []byte { // Each value is a 256-bit number. const numBytes = 256 / 8 if e.p == nil { e.p = &curvePoint{} } e.p.MakeAffine() ret := make([]byte, numBytes*2) if e.p.IsInfinity() { return ret } temp := &gfP{} montDecode(temp, &e.p.x) temp.Marshal(ret) montDecode(temp, &e.p.y) temp.Marshal(ret[numBytes:]) return ret } // Unmarshal sets e to the result of converting the output of Marshal back into // a group element and then returns e. func (e *G1) Unmarshal(m []byte) ([]byte, error) { // Each value is a 256-bit number. const numBytes = 256 / 8 if len(m) < 2*numBytes { return nil, errors.New("bn256: not enough data") } // Unmarshal the points and check their caps if e.p == nil { e.p = &curvePoint{} } else { e.p.x, e.p.y = gfP{0}, gfP{0} } var err error if err = e.p.x.Unmarshal(m); err != nil { return nil, err } if err = e.p.y.Unmarshal(m[numBytes:]); err != nil { return nil, err } // Encode into Montgomery form and ensure it's on the curve montEncode(&e.p.x, &e.p.x) montEncode(&e.p.y, &e.p.y) zero := gfP{0} if e.p.x == zero && e.p.y == zero { // This is the point at infinity. e.p.y = *newGFp(1) e.p.z = gfP{0} e.p.t = gfP{0} } else { e.p.z = *newGFp(1) e.p.t = *newGFp(1) if !e.p.IsOnCurve() { return nil, errors.New("bn256: malformed point") } } return m[2*numBytes:], nil } // G2 is an abstract cyclic group. The zero value is suitable for use as the // output of an operation, but cannot be used as an input. type G2 struct { p *twistPoint } // RandomG2 returns x and g₂ˣ where x is a random, non-zero number read from r. func RandomG2(r io.Reader) (*big.Int, *G2, error) { k, err := randomK(r) if err != nil { return nil, nil, err } return k, new(G2).ScalarBaseMult(k), nil } func (e *G2) String() string { return "bn256.G2" + e.p.String() } // ScalarBaseMult sets e to g*k where g is the generator of the group and then // returns out. func (e *G2) ScalarBaseMult(k *big.Int) *G2 { if e.p == nil { e.p = &twistPoint{} } e.p.Mul(twistGen, k) return e } // ScalarMult sets e to a*k and then returns e. func (e *G2) ScalarMult(a *G2, k *big.Int) *G2 { if e.p == nil { e.p = &twistPoint{} } e.p.Mul(a.p, k) return e } // Add sets e to a+b and then returns e. func (e *G2) Add(a, b *G2) *G2 { if e.p == nil { e.p = &twistPoint{} } e.p.Add(a.p, b.p) return e } // Neg sets e to -a and then returns e. func (e *G2) Neg(a *G2) *G2 { if e.p == nil { e.p = &twistPoint{} } e.p.Neg(a.p) return e } // Set sets e to a and then returns e. func (e *G2) Set(a *G2) *G2 { if e.p == nil { e.p = &twistPoint{} } e.p.Set(a.p) return e } // Marshal converts e into a byte slice. func (e *G2) Marshal() []byte { // Each value is a 256-bit number. const numBytes = 256 / 8 if e.p == nil { e.p = &twistPoint{} } e.p.MakeAffine() ret := make([]byte, numBytes*4) if e.p.IsInfinity() { return ret } temp := &gfP{} montDecode(temp, &e.p.x.x) temp.Marshal(ret) montDecode(temp, &e.p.x.y) temp.Marshal(ret[numBytes:]) montDecode(temp, &e.p.y.x) temp.Marshal(ret[2*numBytes:]) montDecode(temp, &e.p.y.y) temp.Marshal(ret[3*numBytes:]) return ret } // Unmarshal sets e to the result of converting the output of Marshal back into // a group element and then returns e. func (e *G2) Unmarshal(m []byte) ([]byte, error) { // Each value is a 256-bit number. const numBytes = 256 / 8 if len(m) < 4*numBytes { return nil, errors.New("bn256: not enough data") } // Unmarshal the points and check their caps if e.p == nil { e.p = &twistPoint{} } var err error if err = e.p.x.x.Unmarshal(m); err != nil { return nil, err } if err = e.p.x.y.Unmarshal(m[numBytes:]); err != nil { return nil, err } if err = e.p.y.x.Unmarshal(m[2*numBytes:]); err != nil { return nil, err } if err = e.p.y.y.Unmarshal(m[3*numBytes:]); err != nil { return nil, err } // Encode into Montgomery form and ensure it's on the curve montEncode(&e.p.x.x, &e.p.x.x) montEncode(&e.p.x.y, &e.p.x.y) montEncode(&e.p.y.x, &e.p.y.x) montEncode(&e.p.y.y, &e.p.y.y) if e.p.x.IsZero() && e.p.y.IsZero() { // This is the point at infinity. e.p.y.SetOne() e.p.z.SetZero() e.p.t.SetZero() } else { e.p.z.SetOne() e.p.t.SetOne() if !e.p.IsOnCurve() { return nil, errors.New("bn256: malformed point") } } return m[4*numBytes:], nil } // GT is an abstract cyclic group. The zero value is suitable for use as the // output of an operation, but cannot be used as an input. type GT struct { p *gfP12 } // Pair calculates an Optimal Ate pairing. func Pair(g1 *G1, g2 *G2) *GT { return >{optimalAte(g2.p, g1.p)} } // PairingCheck calculates the Optimal Ate pairing for a set of points. func PairingCheck(a []*G1, b []*G2) bool { acc := new(gfP12) acc.SetOne() for i := 0; i < len(a); i++ { if a[i].p.IsInfinity() || b[i].p.IsInfinity() { continue } acc.Mul(acc, miller(b[i].p, a[i].p)) } return finalExponentiation(acc).IsOne() } // Miller applies Miller's algorithm, which is a bilinear function from the // source groups to F_p^12. Miller(g1, g2).Finalize() is equivalent to Pair(g1, // g2). func Miller(g1 *G1, g2 *G2) *GT { return >{miller(g2.p, g1.p)} } func (e *GT) String() string { return "bn256.GT" + e.p.String() } // ScalarMult sets e to a*k and then returns e. func (e *GT) ScalarMult(a *GT, k *big.Int) *GT { if e.p == nil { e.p = &gfP12{} } e.p.Exp(a.p, k) return e } // Add sets e to a+b and then returns e. func (e *GT) Add(a, b *GT) *GT { if e.p == nil { e.p = &gfP12{} } e.p.Mul(a.p, b.p) return e } // Neg sets e to -a and then returns e. func (e *GT) Neg(a *GT) *GT { if e.p == nil { e.p = &gfP12{} } e.p.Conjugate(a.p) return e } // Set sets e to a and then returns e. func (e *GT) Set(a *GT) *GT { if e.p == nil { e.p = &gfP12{} } e.p.Set(a.p) return e } // Finalize is a linear function from F_p^12 to GT. func (e *GT) Finalize() *GT { ret := finalExponentiation(e.p) e.p.Set(ret) return e } // Marshal converts e into a byte slice. func (e *GT) Marshal() []byte { // Each value is a 256-bit number. const numBytes = 256 / 8 if e.p == nil { e.p = &gfP12{} e.p.SetOne() } ret := make([]byte, numBytes*12) temp := &gfP{} montDecode(temp, &e.p.x.x.x) temp.Marshal(ret) montDecode(temp, &e.p.x.x.y) temp.Marshal(ret[numBytes:]) montDecode(temp, &e.p.x.y.x) temp.Marshal(ret[2*numBytes:]) montDecode(temp, &e.p.x.y.y) temp.Marshal(ret[3*numBytes:]) montDecode(temp, &e.p.x.z.x) temp.Marshal(ret[4*numBytes:]) montDecode(temp, &e.p.x.z.y) temp.Marshal(ret[5*numBytes:]) montDecode(temp, &e.p.y.x.x) temp.Marshal(ret[6*numBytes:]) montDecode(temp, &e.p.y.x.y) temp.Marshal(ret[7*numBytes:]) montDecode(temp, &e.p.y.y.x) temp.Marshal(ret[8*numBytes:]) montDecode(temp, &e.p.y.y.y) temp.Marshal(ret[9*numBytes:]) montDecode(temp, &e.p.y.z.x) temp.Marshal(ret[10*numBytes:]) montDecode(temp, &e.p.y.z.y) temp.Marshal(ret[11*numBytes:]) return ret } // Unmarshal sets e to the result of converting the output of Marshal back into // a group element and then returns e. func (e *GT) Unmarshal(m []byte) ([]byte, error) { // Each value is a 256-bit number. const numBytes = 256 / 8 if len(m) < 12*numBytes { return nil, errors.New("bn256: not enough data") } if e.p == nil { e.p = &gfP12{} } var err error if err = e.p.x.x.x.Unmarshal(m); err != nil { return nil, err } if err = e.p.x.x.y.Unmarshal(m[numBytes:]); err != nil { return nil, err } if err = e.p.x.y.x.Unmarshal(m[2*numBytes:]); err != nil { return nil, err } if err = e.p.x.y.y.Unmarshal(m[3*numBytes:]); err != nil { return nil, err } if err = e.p.x.z.x.Unmarshal(m[4*numBytes:]); err != nil { return nil, err } if err = e.p.x.z.y.Unmarshal(m[5*numBytes:]); err != nil { return nil, err } if err = e.p.y.x.x.Unmarshal(m[6*numBytes:]); err != nil { return nil, err } if err = e.p.y.x.y.Unmarshal(m[7*numBytes:]); err != nil { return nil, err } if err = e.p.y.y.x.Unmarshal(m[8*numBytes:]); err != nil { return nil, err } if err = e.p.y.y.y.Unmarshal(m[9*numBytes:]); err != nil { return nil, err } if err = e.p.y.z.x.Unmarshal(m[10*numBytes:]); err != nil { return nil, err } if err = e.p.y.z.y.Unmarshal(m[11*numBytes:]); err != nil { return nil, err } montEncode(&e.p.x.x.x, &e.p.x.x.x) montEncode(&e.p.x.x.y, &e.p.x.x.y) montEncode(&e.p.x.y.x, &e.p.x.y.x) montEncode(&e.p.x.y.y, &e.p.x.y.y) montEncode(&e.p.x.z.x, &e.p.x.z.x) montEncode(&e.p.x.z.y, &e.p.x.z.y) montEncode(&e.p.y.x.x, &e.p.y.x.x) montEncode(&e.p.y.x.y, &e.p.y.x.y) montEncode(&e.p.y.y.x, &e.p.y.y.x) montEncode(&e.p.y.y.y, &e.p.y.y.y) montEncode(&e.p.y.z.x, &e.p.y.z.x) montEncode(&e.p.y.z.y, &e.p.y.z.y) return m[12*numBytes:], nil }