// Go support for Protocol Buffers - Google's data interchange format // // Copyright 2010 The Go Authors. All rights reserved. // https://github.com/golang/protobuf // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. /* The code generator for the plugin for the Google protocol buffer compiler. It generates Go code from the protocol buffer description files read by the main routine. */ package generator import ( "bufio" "bytes" "compress/gzip" "crypto/sha256" "encoding/hex" "fmt" "go/build" "go/parser" "go/printer" "go/token" "log" "os" "path" "sort" "strconv" "strings" "unicode" "unicode/utf8" "github.com/golang/protobuf/proto" "github.com/golang/protobuf/protoc-gen-go/generator/internal/remap" "github.com/golang/protobuf/protoc-gen-go/descriptor" plugin "github.com/golang/protobuf/protoc-gen-go/plugin" ) // generatedCodeVersion indicates a version of the generated code. // It is incremented whenever an incompatibility between the generated code and // proto package is introduced; the generated code references // a constant, proto.ProtoPackageIsVersionN (where N is generatedCodeVersion). const generatedCodeVersion = 2 // A Plugin provides functionality to add to the output during Go code generation, // such as to produce RPC stubs. type Plugin interface { // Name identifies the plugin. Name() string // Init is called once after data structures are built but before // code generation begins. Init(g *Generator) // Generate produces the code generated by the plugin for this file, // except for the imports, by calling the generator's methods P, In, and Out. Generate(file *FileDescriptor) // GenerateImports produces the import declarations for this file. // It is called after Generate. GenerateImports(file *FileDescriptor) } var plugins []Plugin // RegisterPlugin installs a (second-order) plugin to be run when the Go output is generated. // It is typically called during initialization. func RegisterPlugin(p Plugin) { plugins = append(plugins, p) } // A GoImportPath is the import path of a Go package. e.g., "google.golang.org/genproto/protobuf". type GoImportPath string func (p GoImportPath) String() string { return strconv.Quote(string(p)) } // A GoPackageName is the name of a Go package. e.g., "protobuf". type GoPackageName string // Each type we import as a protocol buffer (other than FileDescriptorProto) needs // a pointer to the FileDescriptorProto that represents it. These types achieve that // wrapping by placing each Proto inside a struct with the pointer to its File. The // structs have the same names as their contents, with "Proto" removed. // FileDescriptor is used to store the things that it points to. // The file and package name method are common to messages and enums. type common struct { file *FileDescriptor // File this object comes from. } // GoImportPath is the import path of the Go package containing the type. func (c *common) GoImportPath() GoImportPath { return c.file.importPath } func (c *common) File() *FileDescriptor { return c.file } func fileIsProto3(file *descriptor.FileDescriptorProto) bool { return file.GetSyntax() == "proto3" } func (c *common) proto3() bool { return fileIsProto3(c.file.FileDescriptorProto) } // Descriptor represents a protocol buffer message. type Descriptor struct { common *descriptor.DescriptorProto parent *Descriptor // The containing message, if any. nested []*Descriptor // Inner messages, if any. enums []*EnumDescriptor // Inner enums, if any. ext []*ExtensionDescriptor // Extensions, if any. typename []string // Cached typename vector. index int // The index into the container, whether the file or another message. path string // The SourceCodeInfo path as comma-separated integers. group bool } // TypeName returns the elements of the dotted type name. // The package name is not part of this name. func (d *Descriptor) TypeName() []string { if d.typename != nil { return d.typename } n := 0 for parent := d; parent != nil; parent = parent.parent { n++ } s := make([]string, n) for parent := d; parent != nil; parent = parent.parent { n-- s[n] = parent.GetName() } d.typename = s return s } // EnumDescriptor describes an enum. If it's at top level, its parent will be nil. // Otherwise it will be the descriptor of the message in which it is defined. type EnumDescriptor struct { common *descriptor.EnumDescriptorProto parent *Descriptor // The containing message, if any. typename []string // Cached typename vector. index int // The index into the container, whether the file or a message. path string // The SourceCodeInfo path as comma-separated integers. } // TypeName returns the elements of the dotted type name. // The package name is not part of this name. func (e *EnumDescriptor) TypeName() (s []string) { if e.typename != nil { return e.typename } name := e.GetName() if e.parent == nil { s = make([]string, 1) } else { pname := e.parent.TypeName() s = make([]string, len(pname)+1) copy(s, pname) } s[len(s)-1] = name e.typename = s return s } // Everything but the last element of the full type name, CamelCased. // The values of type Foo.Bar are call Foo_value1... not Foo_Bar_value1... . func (e *EnumDescriptor) prefix() string { if e.parent == nil { // If the enum is not part of a message, the prefix is just the type name. return CamelCase(*e.Name) + "_" } typeName := e.TypeName() return CamelCaseSlice(typeName[0:len(typeName)-1]) + "_" } // The integer value of the named constant in this enumerated type. func (e *EnumDescriptor) integerValueAsString(name string) string { for _, c := range e.Value { if c.GetName() == name { return fmt.Sprint(c.GetNumber()) } } log.Fatal("cannot find value for enum constant") return "" } // ExtensionDescriptor describes an extension. If it's at top level, its parent will be nil. // Otherwise it will be the descriptor of the message in which it is defined. type ExtensionDescriptor struct { common *descriptor.FieldDescriptorProto parent *Descriptor // The containing message, if any. } // TypeName returns the elements of the dotted type name. // The package name is not part of this name. func (e *ExtensionDescriptor) TypeName() (s []string) { name := e.GetName() if e.parent == nil { // top-level extension s = make([]string, 1) } else { pname := e.parent.TypeName() s = make([]string, len(pname)+1) copy(s, pname) } s[len(s)-1] = name return s } // DescName returns the variable name used for the generated descriptor. func (e *ExtensionDescriptor) DescName() string { // The full type name. typeName := e.TypeName() // Each scope of the extension is individually CamelCased, and all are joined with "_" with an "E_" prefix. for i, s := range typeName { typeName[i] = CamelCase(s) } return "E_" + strings.Join(typeName, "_") } // ImportedDescriptor describes a type that has been publicly imported from another file. type ImportedDescriptor struct { common o Object } func (id *ImportedDescriptor) TypeName() []string { return id.o.TypeName() } // FileDescriptor describes an protocol buffer descriptor file (.proto). // It includes slices of all the messages and enums defined within it. // Those slices are constructed by WrapTypes. type FileDescriptor struct { *descriptor.FileDescriptorProto desc []*Descriptor // All the messages defined in this file. enum []*EnumDescriptor // All the enums defined in this file. ext []*ExtensionDescriptor // All the top-level extensions defined in this file. imp []*ImportedDescriptor // All types defined in files publicly imported by this file. // Comments, stored as a map of path (comma-separated integers) to the comment. comments map[string]*descriptor.SourceCodeInfo_Location // The full list of symbols that are exported, // as a map from the exported object to its symbols. // This is used for supporting public imports. exported map[Object][]symbol fingerprint string // Fingerprint of this file's contents. importPath GoImportPath // Import path of this file's package. packageName GoPackageName // Name of this file's Go package. proto3 bool // whether to generate proto3 code for this file } // VarName is the variable name we'll use in the generated code to refer // to the compressed bytes of this descriptor. It is not exported, so // it is only valid inside the generated package. func (d *FileDescriptor) VarName() string { name := strings.Map(badToUnderscore, baseName(d.GetName())) return fmt.Sprintf("fileDescriptor_%s_%s", name, d.fingerprint) } // goPackageOption interprets the file's go_package option. // If there is no go_package, it returns ("", "", false). // If there's a simple name, it returns ("", pkg, true). // If the option implies an import path, it returns (impPath, pkg, true). func (d *FileDescriptor) goPackageOption() (impPath GoImportPath, pkg GoPackageName, ok bool) { opt := d.GetOptions().GetGoPackage() if opt == "" { return "", "", false } // A semicolon-delimited suffix delimits the import path and package name. sc := strings.Index(opt, ";") if sc >= 0 { return GoImportPath(opt[:sc]), cleanPackageName(opt[sc+1:]), true } // The presence of a slash implies there's an import path. slash := strings.LastIndex(opt, "/") if slash >= 0 { return GoImportPath(opt), cleanPackageName(opt[slash+1:]), true } return "", cleanPackageName(opt), true } // goFileName returns the output name for the generated Go file. func (d *FileDescriptor) goFileName(pathType pathType) string { name := *d.Name if ext := path.Ext(name); ext == ".proto" || ext == ".protodevel" { name = name[:len(name)-len(ext)] } name += ".pb.go" if pathType == pathTypeSourceRelative { return name } // Does the file have a "go_package" option? // If it does, it may override the filename. if impPath, _, ok := d.goPackageOption(); ok && impPath != "" { // Replace the existing dirname with the declared import path. _, name = path.Split(name) name = path.Join(string(impPath), name) return name } return name } func (d *FileDescriptor) addExport(obj Object, sym symbol) { d.exported[obj] = append(d.exported[obj], sym) } // symbol is an interface representing an exported Go symbol. type symbol interface { // GenerateAlias should generate an appropriate alias // for the symbol from the named package. GenerateAlias(g *Generator, pkg GoPackageName) } type messageSymbol struct { sym string hasExtensions, isMessageSet bool oneofTypes []string } type getterSymbol struct { name string typ string typeName string // canonical name in proto world; empty for proto.Message and similar genType bool // whether typ contains a generated type (message/group/enum) } func (ms *messageSymbol) GenerateAlias(g *Generator, pkg GoPackageName) { g.P("type ", ms.sym, " = ", pkg, ".", ms.sym) for _, name := range ms.oneofTypes { g.P("type ", name, " = ", pkg, ".", name) } } type enumSymbol struct { name string proto3 bool // Whether this came from a proto3 file. } func (es enumSymbol) GenerateAlias(g *Generator, pkg GoPackageName) { s := es.name g.P("type ", s, " = ", pkg, ".", s) g.P("var ", s, "_name = ", pkg, ".", s, "_name") g.P("var ", s, "_value = ", pkg, ".", s, "_value") } type constOrVarSymbol struct { sym string typ string // either "const" or "var" cast string // if non-empty, a type cast is required (used for enums) } func (cs constOrVarSymbol) GenerateAlias(g *Generator, pkg GoPackageName) { v := string(pkg) + "." + cs.sym if cs.cast != "" { v = cs.cast + "(" + v + ")" } g.P(cs.typ, " ", cs.sym, " = ", v) } // Object is an interface abstracting the abilities shared by enums, messages, extensions and imported objects. type Object interface { GoImportPath() GoImportPath TypeName() []string File() *FileDescriptor } // Generator is the type whose methods generate the output, stored in the associated response structure. type Generator struct { *bytes.Buffer Request *plugin.CodeGeneratorRequest // The input. Response *plugin.CodeGeneratorResponse // The output. Param map[string]string // Command-line parameters. PackageImportPath string // Go import path of the package we're generating code for ImportPrefix string // String to prefix to imported package file names. ImportMap map[string]string // Mapping from .proto file name to import path Pkg map[string]string // The names under which we import support packages outputImportPath GoImportPath // Package we're generating code for. allFiles []*FileDescriptor // All files in the tree allFilesByName map[string]*FileDescriptor // All files by filename. genFiles []*FileDescriptor // Those files we will generate output for. file *FileDescriptor // The file we are compiling now. packageNames map[GoImportPath]GoPackageName // Imported package names in the current file. usedPackages map[GoImportPath]bool // Packages used in current file. usedPackageNames map[GoPackageName]bool // Package names used in the current file. typeNameToObject map[string]Object // Key is a fully-qualified name in input syntax. init []string // Lines to emit in the init function. indent string pathType pathType // How to generate output filenames. writeOutput bool annotateCode bool // whether to store annotations annotations []*descriptor.GeneratedCodeInfo_Annotation // annotations to store } type pathType int const ( pathTypeImport pathType = iota pathTypeSourceRelative ) // New creates a new generator and allocates the request and response protobufs. func New() *Generator { g := new(Generator) g.Buffer = new(bytes.Buffer) g.Request = new(plugin.CodeGeneratorRequest) g.Response = new(plugin.CodeGeneratorResponse) return g } // Error reports a problem, including an error, and exits the program. func (g *Generator) Error(err error, msgs ...string) { s := strings.Join(msgs, " ") + ":" + err.Error() log.Print("protoc-gen-go: error:", s) os.Exit(1) } // Fail reports a problem and exits the program. func (g *Generator) Fail(msgs ...string) { s := strings.Join(msgs, " ") log.Print("protoc-gen-go: error:", s) os.Exit(1) } // CommandLineParameters breaks the comma-separated list of key=value pairs // in the parameter (a member of the request protobuf) into a key/value map. // It then sets file name mappings defined by those entries. func (g *Generator) CommandLineParameters(parameter string) { g.Param = make(map[string]string) for _, p := range strings.Split(parameter, ",") { if i := strings.Index(p, "="); i < 0 { g.Param[p] = "" } else { g.Param[p[0:i]] = p[i+1:] } } g.ImportMap = make(map[string]string) pluginList := "none" // Default list of plugin names to enable (empty means all). for k, v := range g.Param { switch k { case "import_prefix": g.ImportPrefix = v case "import_path": g.PackageImportPath = v case "paths": switch v { case "import": g.pathType = pathTypeImport case "source_relative": g.pathType = pathTypeSourceRelative default: g.Fail(fmt.Sprintf(`Unknown path type %q: want "import" or "source_relative".`, v)) } case "plugins": pluginList = v case "annotate_code": if v == "true" { g.annotateCode = true } default: if len(k) > 0 && k[0] == 'M' { g.ImportMap[k[1:]] = v } } } if pluginList != "" { // Amend the set of plugins. enabled := make(map[string]bool) for _, name := range strings.Split(pluginList, "+") { enabled[name] = true } var nplugins []Plugin for _, p := range plugins { if enabled[p.Name()] { nplugins = append(nplugins, p) } } plugins = nplugins } } // DefaultPackageName returns the package name printed for the object. // If its file is in a different package, it returns the package name we're using for this file, plus ".". // Otherwise it returns the empty string. func (g *Generator) DefaultPackageName(obj Object) string { importPath := obj.GoImportPath() if importPath == g.outputImportPath { return "" } return string(g.GoPackageName(importPath)) + "." } // GoPackageName returns the name used for a package. func (g *Generator) GoPackageName(importPath GoImportPath) GoPackageName { if name, ok := g.packageNames[importPath]; ok { return name } name := cleanPackageName(baseName(string(importPath))) for i, orig := 1, name; g.usedPackageNames[name]; i++ { name = orig + GoPackageName(strconv.Itoa(i)) } g.packageNames[importPath] = name g.usedPackageNames[name] = true return name } var globalPackageNames = map[GoPackageName]bool{ "fmt": true, "math": true, "proto": true, } // Create and remember a guaranteed unique package name. Pkg is the candidate name. // The FileDescriptor parameter is unused. func RegisterUniquePackageName(pkg string, f *FileDescriptor) string { name := cleanPackageName(pkg) for i, orig := 1, name; globalPackageNames[name]; i++ { name = orig + GoPackageName(strconv.Itoa(i)) } globalPackageNames[name] = true return string(name) } var isGoKeyword = map[string]bool{ "break": true, "case": true, "chan": true, "const": true, "continue": true, "default": true, "else": true, "defer": true, "fallthrough": true, "for": true, "func": true, "go": true, "goto": true, "if": true, "import": true, "interface": true, "map": true, "package": true, "range": true, "return": true, "select": true, "struct": true, "switch": true, "type": true, "var": true, } func cleanPackageName(name string) GoPackageName { name = strings.Map(badToUnderscore, name) // Identifier must not be keyword: insert _. if isGoKeyword[name] { name = "_" + name } // Identifier must not begin with digit: insert _. if r, _ := utf8.DecodeRuneInString(name); unicode.IsDigit(r) { name = "_" + name } return GoPackageName(name) } // defaultGoPackage returns the package name to use, // derived from the import path of the package we're building code for. func (g *Generator) defaultGoPackage() GoPackageName { p := g.PackageImportPath if i := strings.LastIndex(p, "/"); i >= 0 { p = p[i+1:] } return cleanPackageName(p) } // SetPackageNames sets the package name for this run. // The package name must agree across all files being generated. // It also defines unique package names for all imported files. func (g *Generator) SetPackageNames() { g.outputImportPath = g.genFiles[0].importPath defaultPackageNames := make(map[GoImportPath]GoPackageName) for _, f := range g.genFiles { if _, p, ok := f.goPackageOption(); ok { defaultPackageNames[f.importPath] = p } } for _, f := range g.genFiles { if _, p, ok := f.goPackageOption(); ok { // Source file: option go_package = "quux/bar"; f.packageName = p } else if p, ok := defaultPackageNames[f.importPath]; ok { // A go_package option in another file in the same package. // // This is a poor choice in general, since every source file should // contain a go_package option. Supported mainly for historical // compatibility. f.packageName = p } else if p := g.defaultGoPackage(); p != "" { // Command-line: import_path=quux/bar. // // The import_path flag sets a package name for files which don't // contain a go_package option. f.packageName = p } else if p := f.GetPackage(); p != "" { // Source file: package quux.bar; f.packageName = cleanPackageName(p) } else { // Source filename. f.packageName = cleanPackageName(baseName(f.GetName())) } } // Check that all files have a consistent package name and import path. for _, f := range g.genFiles[1:] { if a, b := g.genFiles[0].importPath, f.importPath; a != b { g.Fail(fmt.Sprintf("inconsistent package import paths: %v, %v", a, b)) } if a, b := g.genFiles[0].packageName, f.packageName; a != b { g.Fail(fmt.Sprintf("inconsistent package names: %v, %v", a, b)) } } // Names of support packages. These never vary (if there are conflicts, // we rename the conflicting package), so this could be removed someday. g.Pkg = map[string]string{ "fmt": "fmt", "math": "math", "proto": "proto", } } // WrapTypes walks the incoming data, wrapping DescriptorProtos, EnumDescriptorProtos // and FileDescriptorProtos into file-referenced objects within the Generator. // It also creates the list of files to generate and so should be called before GenerateAllFiles. func (g *Generator) WrapTypes() { g.allFiles = make([]*FileDescriptor, 0, len(g.Request.ProtoFile)) g.allFilesByName = make(map[string]*FileDescriptor, len(g.allFiles)) genFileNames := make(map[string]bool) for _, n := range g.Request.FileToGenerate { genFileNames[n] = true } for _, f := range g.Request.ProtoFile { fd := &FileDescriptor{ FileDescriptorProto: f, exported: make(map[Object][]symbol), proto3: fileIsProto3(f), } // The import path may be set in a number of ways. if substitution, ok := g.ImportMap[f.GetName()]; ok { // Command-line: M=foo.proto=quux/bar. // // Explicit mapping of source file to import path. fd.importPath = GoImportPath(substitution) } else if genFileNames[f.GetName()] && g.PackageImportPath != "" { // Command-line: import_path=quux/bar. // // The import_path flag sets the import path for every file that // we generate code for. fd.importPath = GoImportPath(g.PackageImportPath) } else if p, _, _ := fd.goPackageOption(); p != "" { // Source file: option go_package = "quux/bar"; // // The go_package option sets the import path. Most users should use this. fd.importPath = p } else { // Source filename. // // Last resort when nothing else is available. fd.importPath = GoImportPath(path.Dir(f.GetName())) } // We must wrap the descriptors before we wrap the enums fd.desc = wrapDescriptors(fd) g.buildNestedDescriptors(fd.desc) fd.enum = wrapEnumDescriptors(fd, fd.desc) g.buildNestedEnums(fd.desc, fd.enum) fd.ext = wrapExtensions(fd) extractComments(fd) g.allFiles = append(g.allFiles, fd) g.allFilesByName[f.GetName()] = fd } for _, fd := range g.allFiles { fd.imp = wrapImported(fd, g) } g.genFiles = make([]*FileDescriptor, 0, len(g.Request.FileToGenerate)) for _, fileName := range g.Request.FileToGenerate { fd := g.allFilesByName[fileName] if fd == nil { g.Fail("could not find file named", fileName) } fingerprint, err := fingerprintProto(fd.FileDescriptorProto) if err != nil { g.Error(err) } fd.fingerprint = fingerprint g.genFiles = append(g.genFiles, fd) } } // fingerprintProto returns a fingerprint for a message. // The fingerprint is intended to prevent conflicts between generated fileds, // not to provide cryptographic security. func fingerprintProto(m proto.Message) (string, error) { b, err := proto.Marshal(m) if err != nil { return "", err } h := sha256.Sum256(b) return hex.EncodeToString(h[:8]), nil } // Scan the descriptors in this file. For each one, build the slice of nested descriptors func (g *Generator) buildNestedDescriptors(descs []*Descriptor) { for _, desc := range descs { if len(desc.NestedType) != 0 { for _, nest := range descs { if nest.parent == desc { desc.nested = append(desc.nested, nest) } } if len(desc.nested) != len(desc.NestedType) { g.Fail("internal error: nesting failure for", desc.GetName()) } } } } func (g *Generator) buildNestedEnums(descs []*Descriptor, enums []*EnumDescriptor) { for _, desc := range descs { if len(desc.EnumType) != 0 { for _, enum := range enums { if enum.parent == desc { desc.enums = append(desc.enums, enum) } } if len(desc.enums) != len(desc.EnumType) { g.Fail("internal error: enum nesting failure for", desc.GetName()) } } } } // Construct the Descriptor func newDescriptor(desc *descriptor.DescriptorProto, parent *Descriptor, file *FileDescriptor, index int) *Descriptor { d := &Descriptor{ common: common{file}, DescriptorProto: desc, parent: parent, index: index, } if parent == nil { d.path = fmt.Sprintf("%d,%d", messagePath, index) } else { d.path = fmt.Sprintf("%s,%d,%d", parent.path, messageMessagePath, index) } // The only way to distinguish a group from a message is whether // the containing message has a TYPE_GROUP field that matches. if parent != nil { parts := d.TypeName() if file.Package != nil { parts = append([]string{*file.Package}, parts...) } exp := "." + strings.Join(parts, ".") for _, field := range parent.Field { if field.GetType() == descriptor.FieldDescriptorProto_TYPE_GROUP && field.GetTypeName() == exp { d.group = true break } } } for _, field := range desc.Extension { d.ext = append(d.ext, &ExtensionDescriptor{common{file}, field, d}) } return d } // Return a slice of all the Descriptors defined within this file func wrapDescriptors(file *FileDescriptor) []*Descriptor { sl := make([]*Descriptor, 0, len(file.MessageType)+10) for i, desc := range file.MessageType { sl = wrapThisDescriptor(sl, desc, nil, file, i) } return sl } // Wrap this Descriptor, recursively func wrapThisDescriptor(sl []*Descriptor, desc *descriptor.DescriptorProto, parent *Descriptor, file *FileDescriptor, index int) []*Descriptor { sl = append(sl, newDescriptor(desc, parent, file, index)) me := sl[len(sl)-1] for i, nested := range desc.NestedType { sl = wrapThisDescriptor(sl, nested, me, file, i) } return sl } // Construct the EnumDescriptor func newEnumDescriptor(desc *descriptor.EnumDescriptorProto, parent *Descriptor, file *FileDescriptor, index int) *EnumDescriptor { ed := &EnumDescriptor{ common: common{file}, EnumDescriptorProto: desc, parent: parent, index: index, } if parent == nil { ed.path = fmt.Sprintf("%d,%d", enumPath, index) } else { ed.path = fmt.Sprintf("%s,%d,%d", parent.path, messageEnumPath, index) } return ed } // Return a slice of all the EnumDescriptors defined within this file func wrapEnumDescriptors(file *FileDescriptor, descs []*Descriptor) []*EnumDescriptor { sl := make([]*EnumDescriptor, 0, len(file.EnumType)+10) // Top-level enums. for i, enum := range file.EnumType { sl = append(sl, newEnumDescriptor(enum, nil, file, i)) } // Enums within messages. Enums within embedded messages appear in the outer-most message. for _, nested := range descs { for i, enum := range nested.EnumType { sl = append(sl, newEnumDescriptor(enum, nested, file, i)) } } return sl } // Return a slice of all the top-level ExtensionDescriptors defined within this file. func wrapExtensions(file *FileDescriptor) []*ExtensionDescriptor { var sl []*ExtensionDescriptor for _, field := range file.Extension { sl = append(sl, &ExtensionDescriptor{common{file}, field, nil}) } return sl } // Return a slice of all the types that are publicly imported into this file. func wrapImported(file *FileDescriptor, g *Generator) (sl []*ImportedDescriptor) { for _, index := range file.PublicDependency { df := g.fileByName(file.Dependency[index]) for _, d := range df.desc { if d.GetOptions().GetMapEntry() { continue } sl = append(sl, &ImportedDescriptor{common{file}, d}) } for _, e := range df.enum { sl = append(sl, &ImportedDescriptor{common{file}, e}) } for _, ext := range df.ext { sl = append(sl, &ImportedDescriptor{common{file}, ext}) } } return } func extractComments(file *FileDescriptor) { file.comments = make(map[string]*descriptor.SourceCodeInfo_Location) for _, loc := range file.GetSourceCodeInfo().GetLocation() { if loc.LeadingComments == nil { continue } var p []string for _, n := range loc.Path { p = append(p, strconv.Itoa(int(n))) } file.comments[strings.Join(p, ",")] = loc } } // BuildTypeNameMap builds the map from fully qualified type names to objects. // The key names for the map come from the input data, which puts a period at the beginning. // It should be called after SetPackageNames and before GenerateAllFiles. func (g *Generator) BuildTypeNameMap() { g.typeNameToObject = make(map[string]Object) for _, f := range g.allFiles { // The names in this loop are defined by the proto world, not us, so the // package name may be empty. If so, the dotted package name of X will // be ".X"; otherwise it will be ".pkg.X". dottedPkg := "." + f.GetPackage() if dottedPkg != "." { dottedPkg += "." } for _, enum := range f.enum { name := dottedPkg + dottedSlice(enum.TypeName()) g.typeNameToObject[name] = enum } for _, desc := range f.desc { name := dottedPkg + dottedSlice(desc.TypeName()) g.typeNameToObject[name] = desc } } } // ObjectNamed, given a fully-qualified input type name as it appears in the input data, // returns the descriptor for the message or enum with that name. func (g *Generator) ObjectNamed(typeName string) Object { o, ok := g.typeNameToObject[typeName] if !ok { g.Fail("can't find object with type", typeName) } // If the file of this object isn't a direct dependency of the current file, // or in the current file, then this object has been publicly imported into // a dependency of the current file. // We should return the ImportedDescriptor object for it instead. direct := *o.File().Name == *g.file.Name if !direct { for _, dep := range g.file.Dependency { if *g.fileByName(dep).Name == *o.File().Name { direct = true break } } } if !direct { found := false Loop: for _, dep := range g.file.Dependency { df := g.fileByName(*g.fileByName(dep).Name) for _, td := range df.imp { if td.o == o { // Found it! o = td found = true break Loop } } } if !found { log.Printf("protoc-gen-go: WARNING: failed finding publicly imported dependency for %v, used in %v", typeName, *g.file.Name) } } return o } // AnnotatedAtoms is a list of atoms (as consumed by P) that records the file name and proto AST path from which they originated. type AnnotatedAtoms struct { source string path string atoms []interface{} } // Annotate records the file name and proto AST path of a list of atoms // so that a later call to P can emit a link from each atom to its origin. func Annotate(file *FileDescriptor, path string, atoms ...interface{}) *AnnotatedAtoms { return &AnnotatedAtoms{source: *file.Name, path: path, atoms: atoms} } // printAtom prints the (atomic, non-annotation) argument to the generated output. func (g *Generator) printAtom(v interface{}) { switch v := v.(type) { case string: g.WriteString(v) case *string: g.WriteString(*v) case bool: fmt.Fprint(g, v) case *bool: fmt.Fprint(g, *v) case int: fmt.Fprint(g, v) case *int32: fmt.Fprint(g, *v) case *int64: fmt.Fprint(g, *v) case float64: fmt.Fprint(g, v) case *float64: fmt.Fprint(g, *v) case GoPackageName: g.WriteString(string(v)) case GoImportPath: g.WriteString(strconv.Quote(string(v))) default: g.Fail(fmt.Sprintf("unknown type in printer: %T", v)) } } // P prints the arguments to the generated output. It handles strings and int32s, plus // handling indirections because they may be *string, etc. Any inputs of type AnnotatedAtoms may emit // annotations in a .meta file in addition to outputting the atoms themselves (if g.annotateCode // is true). func (g *Generator) P(str ...interface{}) { if !g.writeOutput { return } g.WriteString(g.indent) for _, v := range str { switch v := v.(type) { case *AnnotatedAtoms: begin := int32(g.Len()) for _, v := range v.atoms { g.printAtom(v) } if g.annotateCode { end := int32(g.Len()) var path []int32 for _, token := range strings.Split(v.path, ",") { val, err := strconv.ParseInt(token, 10, 32) if err != nil { g.Fail("could not parse proto AST path: ", err.Error()) } path = append(path, int32(val)) } g.annotations = append(g.annotations, &descriptor.GeneratedCodeInfo_Annotation{ Path: path, SourceFile: &v.source, Begin: &begin, End: &end, }) } default: g.printAtom(v) } } g.WriteByte('\n') } // addInitf stores the given statement to be printed inside the file's init function. // The statement is given as a format specifier and arguments. func (g *Generator) addInitf(stmt string, a ...interface{}) { g.init = append(g.init, fmt.Sprintf(stmt, a...)) } // In Indents the output one tab stop. func (g *Generator) In() { g.indent += "\t" } // Out unindents the output one tab stop. func (g *Generator) Out() { if len(g.indent) > 0 { g.indent = g.indent[1:] } } // GenerateAllFiles generates the output for all the files we're outputting. func (g *Generator) GenerateAllFiles() { // Initialize the plugins for _, p := range plugins { p.Init(g) } // Generate the output. The generator runs for every file, even the files // that we don't generate output for, so that we can collate the full list // of exported symbols to support public imports. genFileMap := make(map[*FileDescriptor]bool, len(g.genFiles)) for _, file := range g.genFiles { genFileMap[file] = true } for _, file := range g.allFiles { g.Reset() g.annotations = nil g.writeOutput = genFileMap[file] g.generate(file) if !g.writeOutput { continue } fname := file.goFileName(g.pathType) g.Response.File = append(g.Response.File, &plugin.CodeGeneratorResponse_File{ Name: proto.String(fname), Content: proto.String(g.String()), }) if g.annotateCode { // Store the generated code annotations in text, as the protoc plugin protocol requires that // strings contain valid UTF-8. g.Response.File = append(g.Response.File, &plugin.CodeGeneratorResponse_File{ Name: proto.String(file.goFileName(g.pathType) + ".meta"), Content: proto.String(proto.CompactTextString(&descriptor.GeneratedCodeInfo{Annotation: g.annotations})), }) } } } // Run all the plugins associated with the file. func (g *Generator) runPlugins(file *FileDescriptor) { for _, p := range plugins { p.Generate(file) } } // Fill the response protocol buffer with the generated output for all the files we're // supposed to generate. func (g *Generator) generate(file *FileDescriptor) { g.file = file g.usedPackages = make(map[GoImportPath]bool) g.packageNames = make(map[GoImportPath]GoPackageName) g.usedPackageNames = make(map[GoPackageName]bool) for name := range globalPackageNames { g.usedPackageNames[name] = true } g.P("// This is a compile-time assertion to ensure that this generated file") g.P("// is compatible with the proto package it is being compiled against.") g.P("// A compilation error at this line likely means your copy of the") g.P("// proto package needs to be updated.") g.P("const _ = ", g.Pkg["proto"], ".ProtoPackageIsVersion", generatedCodeVersion, " // please upgrade the proto package") g.P() for _, td := range g.file.imp { g.generateImported(td) } for _, enum := range g.file.enum { g.generateEnum(enum) } for _, desc := range g.file.desc { // Don't generate virtual messages for maps. if desc.GetOptions().GetMapEntry() { continue } g.generateMessage(desc) } for _, ext := range g.file.ext { g.generateExtension(ext) } g.generateInitFunction() // Run the plugins before the imports so we know which imports are necessary. g.runPlugins(file) g.generateFileDescriptor(file) // Generate header and imports last, though they appear first in the output. rem := g.Buffer remAnno := g.annotations g.Buffer = new(bytes.Buffer) g.annotations = nil g.generateHeader() g.generateImports() if !g.writeOutput { return } // Adjust the offsets for annotations displaced by the header and imports. for _, anno := range remAnno { *anno.Begin += int32(g.Len()) *anno.End += int32(g.Len()) g.annotations = append(g.annotations, anno) } g.Write(rem.Bytes()) // Reformat generated code and patch annotation locations. fset := token.NewFileSet() original := g.Bytes() if g.annotateCode { // make a copy independent of g; we'll need it after Reset. original = append([]byte(nil), original...) } ast, err := parser.ParseFile(fset, "", original, parser.ParseComments) if err != nil { // Print out the bad code with line numbers. // This should never happen in practice, but it can while changing generated code, // so consider this a debugging aid. var src bytes.Buffer s := bufio.NewScanner(bytes.NewReader(original)) for line := 1; s.Scan(); line++ { fmt.Fprintf(&src, "%5d\t%s\n", line, s.Bytes()) } g.Fail("bad Go source code was generated:", err.Error(), "\n"+src.String()) } g.Reset() err = (&printer.Config{Mode: printer.TabIndent | printer.UseSpaces, Tabwidth: 8}).Fprint(g, fset, ast) if err != nil { g.Fail("generated Go source code could not be reformatted:", err.Error()) } if g.annotateCode { m, err := remap.Compute(original, g.Bytes()) if err != nil { g.Fail("formatted generated Go source code could not be mapped back to the original code:", err.Error()) } for _, anno := range g.annotations { new, ok := m.Find(int(*anno.Begin), int(*anno.End)) if !ok { g.Fail("span in formatted generated Go source code could not be mapped back to the original code") } *anno.Begin = int32(new.Pos) *anno.End = int32(new.End) } } } // Generate the header, including package definition func (g *Generator) generateHeader() { g.P("// Code generated by protoc-gen-go. DO NOT EDIT.") if g.file.GetOptions().GetDeprecated() { g.P("// ", g.file.Name, " is a deprecated file.") } else { g.P("// source: ", g.file.Name) } g.P() importPath, _, _ := g.file.goPackageOption() if importPath == "" { g.P("package ", g.file.packageName) } else { g.P("package ", g.file.packageName, " // import ", GoImportPath(g.ImportPrefix)+importPath) } g.P() if loc, ok := g.file.comments[strconv.Itoa(packagePath)]; ok { g.P("/*") // not using g.PrintComments because this is a /* */ comment block. text := strings.TrimSuffix(loc.GetLeadingComments(), "\n") for _, line := range strings.Split(text, "\n") { line = strings.TrimPrefix(line, " ") // ensure we don't escape from the block comment line = strings.Replace(line, "*/", "* /", -1) g.P(line) } g.P("*/") g.P() } } // deprecationComment is the standard comment added to deprecated // messages, fields, enums, and enum values. var deprecationComment = "// Deprecated: Do not use." // PrintComments prints any comments from the source .proto file. // The path is a comma-separated list of integers. // It returns an indication of whether any comments were printed. // See descriptor.proto for its format. func (g *Generator) PrintComments(path string) bool { if !g.writeOutput { return false } if loc, ok := g.file.comments[path]; ok { text := strings.TrimSuffix(loc.GetLeadingComments(), "\n") for _, line := range strings.Split(text, "\n") { g.P("// ", strings.TrimPrefix(line, " ")) } return true } return false } func (g *Generator) fileByName(filename string) *FileDescriptor { return g.allFilesByName[filename] } // weak returns whether the ith import of the current file is a weak import. func (g *Generator) weak(i int32) bool { for _, j := range g.file.WeakDependency { if j == i { return true } } return false } // Generate the imports func (g *Generator) generateImports() { // We almost always need a proto import. Rather than computing when we // do, which is tricky when there's a plugin, just import it and // reference it later. The same argument applies to the fmt and math packages. g.P("import "+g.Pkg["proto"]+" ", GoImportPath(g.ImportPrefix)+"github.com/golang/protobuf/proto") g.P("import " + g.Pkg["fmt"] + ` "fmt"`) g.P("import " + g.Pkg["math"] + ` "math"`) var ( imports = make(map[GoImportPath]bool) strongImports = make(map[GoImportPath]bool) importPaths []string ) for i, s := range g.file.Dependency { fd := g.fileByName(s) importPath := fd.importPath // Do not import our own package. if importPath == g.file.importPath { continue } if !imports[importPath] { importPaths = append(importPaths, string(importPath)) } imports[importPath] = true if !g.weak(int32(i)) { strongImports[importPath] = true } } sort.Strings(importPaths) for i := range importPaths { importPath := GoImportPath(importPaths[i]) packageName := g.GoPackageName(importPath) fullPath := GoImportPath(g.ImportPrefix) + importPath // Skip weak imports. if !strongImports[importPath] { g.P("// skipping weak import ", packageName, " ", fullPath) continue } // We need to import all the dependencies, even if we don't reference them, // because other code and tools depend on having the full transitive closure // of protocol buffer types in the binary. if _, ok := g.usedPackages[importPath]; !ok { packageName = "_" } g.P("import ", packageName, " ", fullPath) } g.P() // TODO: may need to worry about uniqueness across plugins for _, p := range plugins { p.GenerateImports(g.file) g.P() } g.P("// Reference imports to suppress errors if they are not otherwise used.") g.P("var _ = ", g.Pkg["proto"], ".Marshal") g.P("var _ = ", g.Pkg["fmt"], ".Errorf") g.P("var _ = ", g.Pkg["math"], ".Inf") g.P() } func (g *Generator) generateImported(id *ImportedDescriptor) { tn := id.TypeName() sn := tn[len(tn)-1] df := id.o.File() filename := *df.Name if df.importPath == g.file.importPath { // Don't generate type aliases for files in the same Go package as this one. g.P("// Ignoring public import of ", sn, " from ", filename) g.P() return } if !supportTypeAliases { g.Fail(fmt.Sprintf("%s: public imports require at least go1.9", filename)) } g.P("// ", sn, " from public import ", filename) g.usedPackages[df.importPath] = true for _, sym := range df.exported[id.o] { sym.GenerateAlias(g, g.GoPackageName(df.importPath)) } g.P() } // Generate the enum definitions for this EnumDescriptor. func (g *Generator) generateEnum(enum *EnumDescriptor) { // The full type name typeName := enum.TypeName() // The full type name, CamelCased. ccTypeName := CamelCaseSlice(typeName) ccPrefix := enum.prefix() deprecatedEnum := "" if enum.GetOptions().GetDeprecated() { deprecatedEnum = deprecationComment } g.PrintComments(enum.path) g.P("type ", Annotate(enum.file, enum.path, ccTypeName), " int32", deprecatedEnum) g.file.addExport(enum, enumSymbol{ccTypeName, enum.proto3()}) g.P("const (") g.In() for i, e := range enum.Value { etorPath := fmt.Sprintf("%s,%d,%d", enum.path, enumValuePath, i) g.PrintComments(etorPath) deprecatedValue := "" if e.GetOptions().GetDeprecated() { deprecatedValue = deprecationComment } name := ccPrefix + *e.Name g.P(Annotate(enum.file, etorPath, name), " ", ccTypeName, " = ", e.Number, " ", deprecatedValue) g.file.addExport(enum, constOrVarSymbol{name, "const", ccTypeName}) } g.Out() g.P(")") g.P("var ", ccTypeName, "_name = map[int32]string{") g.In() generated := make(map[int32]bool) // avoid duplicate values for _, e := range enum.Value { duplicate := "" if _, present := generated[*e.Number]; present { duplicate = "// Duplicate value: " } g.P(duplicate, e.Number, ": ", strconv.Quote(*e.Name), ",") generated[*e.Number] = true } g.Out() g.P("}") g.P("var ", ccTypeName, "_value = map[string]int32{") g.In() for _, e := range enum.Value { g.P(strconv.Quote(*e.Name), ": ", e.Number, ",") } g.Out() g.P("}") if !enum.proto3() { g.P("func (x ", ccTypeName, ") Enum() *", ccTypeName, " {") g.In() g.P("p := new(", ccTypeName, ")") g.P("*p = x") g.P("return p") g.Out() g.P("}") } g.P("func (x ", ccTypeName, ") String() string {") g.In() g.P("return ", g.Pkg["proto"], ".EnumName(", ccTypeName, "_name, int32(x))") g.Out() g.P("}") if !enum.proto3() { g.P("func (x *", ccTypeName, ") UnmarshalJSON(data []byte) error {") g.In() g.P("value, err := ", g.Pkg["proto"], ".UnmarshalJSONEnum(", ccTypeName, `_value, data, "`, ccTypeName, `")`) g.P("if err != nil {") g.In() g.P("return err") g.Out() g.P("}") g.P("*x = ", ccTypeName, "(value)") g.P("return nil") g.Out() g.P("}") } var indexes []string for m := enum.parent; m != nil; m = m.parent { // XXX: skip groups? indexes = append([]string{strconv.Itoa(m.index)}, indexes...) } indexes = append(indexes, strconv.Itoa(enum.index)) g.P("func (", ccTypeName, ") EnumDescriptor() ([]byte, []int) {") g.In() g.P("return ", g.file.VarName(), ", []int{", strings.Join(indexes, ", "), "}") g.Out() g.P("}") if enum.file.GetPackage() == "google.protobuf" && enum.GetName() == "NullValue" { g.P("func (", ccTypeName, `) XXX_WellKnownType() string { return "`, enum.GetName(), `" }`) } g.P() } // The tag is a string like "varint,2,opt,name=fieldname,def=7" that // identifies details of the field for the protocol buffer marshaling and unmarshaling // code. The fields are: // wire encoding // protocol tag number // opt,req,rep for optional, required, or repeated // packed whether the encoding is "packed" (optional; repeated primitives only) // name= the original declared name // enum= the name of the enum type if it is an enum-typed field. // proto3 if this field is in a proto3 message // def= string representation of the default value, if any. // The default value must be in a representation that can be used at run-time // to generate the default value. Thus bools become 0 and 1, for instance. func (g *Generator) goTag(message *Descriptor, field *descriptor.FieldDescriptorProto, wiretype string) string { optrepreq := "" switch { case isOptional(field): optrepreq = "opt" case isRequired(field): optrepreq = "req" case isRepeated(field): optrepreq = "rep" } var defaultValue string if dv := field.DefaultValue; dv != nil { // set means an explicit default defaultValue = *dv // Some types need tweaking. switch *field.Type { case descriptor.FieldDescriptorProto_TYPE_BOOL: if defaultValue == "true" { defaultValue = "1" } else { defaultValue = "0" } case descriptor.FieldDescriptorProto_TYPE_STRING, descriptor.FieldDescriptorProto_TYPE_BYTES: // Nothing to do. Quoting is done for the whole tag. case descriptor.FieldDescriptorProto_TYPE_ENUM: // For enums we need to provide the integer constant. obj := g.ObjectNamed(field.GetTypeName()) if id, ok := obj.(*ImportedDescriptor); ok { // It is an enum that was publicly imported. // We need the underlying type. obj = id.o } enum, ok := obj.(*EnumDescriptor) if !ok { log.Printf("obj is a %T", obj) if id, ok := obj.(*ImportedDescriptor); ok { log.Printf("id.o is a %T", id.o) } g.Fail("unknown enum type", CamelCaseSlice(obj.TypeName())) } defaultValue = enum.integerValueAsString(defaultValue) } defaultValue = ",def=" + defaultValue } enum := "" if *field.Type == descriptor.FieldDescriptorProto_TYPE_ENUM { // We avoid using obj.GoPackageName(), because we want to use the // original (proto-world) package name. obj := g.ObjectNamed(field.GetTypeName()) if id, ok := obj.(*ImportedDescriptor); ok { obj = id.o } enum = ",enum=" if pkg := obj.File().GetPackage(); pkg != "" { enum += pkg + "." } enum += CamelCaseSlice(obj.TypeName()) } packed := "" if (field.Options != nil && field.Options.GetPacked()) || // Per https://developers.google.com/protocol-buffers/docs/proto3#simple: // "In proto3, repeated fields of scalar numeric types use packed encoding by default." (message.proto3() && (field.Options == nil || field.Options.Packed == nil) && isRepeated(field) && isScalar(field)) { packed = ",packed" } fieldName := field.GetName() name := fieldName if *field.Type == descriptor.FieldDescriptorProto_TYPE_GROUP { // We must use the type name for groups instead of // the field name to preserve capitalization. // type_name in FieldDescriptorProto is fully-qualified, // but we only want the local part. name = *field.TypeName if i := strings.LastIndex(name, "."); i >= 0 { name = name[i+1:] } } if json := field.GetJsonName(); json != "" && json != name { // TODO: escaping might be needed, in which case // perhaps this should be in its own "json" tag. name += ",json=" + json } name = ",name=" + name if message.proto3() { name += ",proto3" } oneof := "" if field.OneofIndex != nil { oneof = ",oneof" } return strconv.Quote(fmt.Sprintf("%s,%d,%s%s%s%s%s%s", wiretype, field.GetNumber(), optrepreq, packed, name, enum, oneof, defaultValue)) } func needsStar(typ descriptor.FieldDescriptorProto_Type) bool { switch typ { case descriptor.FieldDescriptorProto_TYPE_GROUP: return false case descriptor.FieldDescriptorProto_TYPE_MESSAGE: return false case descriptor.FieldDescriptorProto_TYPE_BYTES: return false } return true } // TypeName is the printed name appropriate for an item. If the object is in the current file, // TypeName drops the package name and underscores the rest. // Otherwise the object is from another package; and the result is the underscored // package name followed by the item name. // The result always has an initial capital. func (g *Generator) TypeName(obj Object) string { return g.DefaultPackageName(obj) + CamelCaseSlice(obj.TypeName()) } // GoType returns a string representing the type name, and the wire type func (g *Generator) GoType(message *Descriptor, field *descriptor.FieldDescriptorProto) (typ string, wire string) { // TODO: Options. switch *field.Type { case descriptor.FieldDescriptorProto_TYPE_DOUBLE: typ, wire = "float64", "fixed64" case descriptor.FieldDescriptorProto_TYPE_FLOAT: typ, wire = "float32", "fixed32" case descriptor.FieldDescriptorProto_TYPE_INT64: typ, wire = "int64", "varint" case descriptor.FieldDescriptorProto_TYPE_UINT64: typ, wire = "uint64", "varint" case descriptor.FieldDescriptorProto_TYPE_INT32: typ, wire = "int32", "varint" case descriptor.FieldDescriptorProto_TYPE_UINT32: typ, wire = "uint32", "varint" case descriptor.FieldDescriptorProto_TYPE_FIXED64: typ, wire = "uint64", "fixed64" case descriptor.FieldDescriptorProto_TYPE_FIXED32: typ, wire = "uint32", "fixed32" case descriptor.FieldDescriptorProto_TYPE_BOOL: typ, wire = "bool", "varint" case descriptor.FieldDescriptorProto_TYPE_STRING: typ, wire = "string", "bytes" case descriptor.FieldDescriptorProto_TYPE_GROUP: desc := g.ObjectNamed(field.GetTypeName()) typ, wire = "*"+g.TypeName(desc), "group" case descriptor.FieldDescriptorProto_TYPE_MESSAGE: desc := g.ObjectNamed(field.GetTypeName()) typ, wire = "*"+g.TypeName(desc), "bytes" case descriptor.FieldDescriptorProto_TYPE_BYTES: typ, wire = "[]byte", "bytes" case descriptor.FieldDescriptorProto_TYPE_ENUM: desc := g.ObjectNamed(field.GetTypeName()) typ, wire = g.TypeName(desc), "varint" case descriptor.FieldDescriptorProto_TYPE_SFIXED32: typ, wire = "int32", "fixed32" case descriptor.FieldDescriptorProto_TYPE_SFIXED64: typ, wire = "int64", "fixed64" case descriptor.FieldDescriptorProto_TYPE_SINT32: typ, wire = "int32", "zigzag32" case descriptor.FieldDescriptorProto_TYPE_SINT64: typ, wire = "int64", "zigzag64" default: g.Fail("unknown type for", field.GetName()) } if isRepeated(field) { typ = "[]" + typ } else if message != nil && message.proto3() { return } else if field.OneofIndex != nil && message != nil { return } else if needsStar(*field.Type) { typ = "*" + typ } return } func (g *Generator) RecordTypeUse(t string) { if _, ok := g.typeNameToObject[t]; ok { // Call ObjectNamed to get the true object to record the use. obj := g.ObjectNamed(t) g.usedPackages[obj.GoImportPath()] = true } } // Method names that may be generated. Fields with these names get an // underscore appended. Any change to this set is a potential incompatible // API change because it changes generated field names. var methodNames = [...]string{ "Reset", "String", "ProtoMessage", "Marshal", "Unmarshal", "ExtensionRangeArray", "ExtensionMap", "Descriptor", } // Names of messages in the `google.protobuf` package for which // we will generate XXX_WellKnownType methods. var wellKnownTypes = map[string]bool{ "Any": true, "Duration": true, "Empty": true, "Struct": true, "Timestamp": true, "Value": true, "ListValue": true, "DoubleValue": true, "FloatValue": true, "Int64Value": true, "UInt64Value": true, "Int32Value": true, "UInt32Value": true, "BoolValue": true, "StringValue": true, "BytesValue": true, } // Generate the type and default constant definitions for this Descriptor. func (g *Generator) generateMessage(message *Descriptor) { // The full type name typeName := message.TypeName() // The full type name, CamelCased. ccTypeName := CamelCaseSlice(typeName) usedNames := make(map[string]bool) for _, n := range methodNames { usedNames[n] = true } fieldNames := make(map[*descriptor.FieldDescriptorProto]string) fieldGetterNames := make(map[*descriptor.FieldDescriptorProto]string) fieldTypes := make(map[*descriptor.FieldDescriptorProto]string) mapFieldTypes := make(map[*descriptor.FieldDescriptorProto]string) oneofFieldName := make(map[int32]string) // indexed by oneof_index field of FieldDescriptorProto oneofDisc := make(map[int32]string) // name of discriminator method oneofTypeName := make(map[*descriptor.FieldDescriptorProto]string) // without star oneofInsertPoints := make(map[int32]int) // oneof_index => offset of g.Buffer comments := g.PrintComments(message.path) // Guarantee deprecation comments appear after user-provided comments. if message.GetOptions().GetDeprecated() { if comments { // Convention: Separate deprecation comments from original // comments with an empty line. g.P("//") } g.P(deprecationComment) } g.P("type ", Annotate(message.file, message.path, ccTypeName), " struct {") g.In() // allocNames finds a conflict-free variation of the given strings, // consistently mutating their suffixes. // It returns the same number of strings. allocNames := func(ns ...string) []string { Loop: for { for _, n := range ns { if usedNames[n] { for i := range ns { ns[i] += "_" } continue Loop } } for _, n := range ns { usedNames[n] = true } return ns } } for i, field := range message.Field { // Allocate the getter and the field at the same time so name // collisions create field/method consistent names. // TODO: This allocation occurs based on the order of the fields // in the proto file, meaning that a change in the field // ordering can change generated Method/Field names. base := CamelCase(*field.Name) ns := allocNames(base, "Get"+base) fieldName, fieldGetterName := ns[0], ns[1] typename, wiretype := g.GoType(message, field) jsonName := *field.Name tag := fmt.Sprintf("protobuf:%s json:%q", g.goTag(message, field, wiretype), jsonName+",omitempty") fieldNames[field] = fieldName fieldGetterNames[field] = fieldGetterName oneof := field.OneofIndex != nil if oneof && oneofFieldName[*field.OneofIndex] == "" { odp := message.OneofDecl[int(*field.OneofIndex)] fname := allocNames(CamelCase(odp.GetName()))[0] // This is the first field of a oneof we haven't seen before. // Generate the union field. oneofFullPath := fmt.Sprintf("%s,%d,%d", message.path, messageOneofPath, *field.OneofIndex) com := g.PrintComments(oneofFullPath) if com { g.P("//") } g.P("// Types that are valid to be assigned to ", fname, ":") // Generate the rest of this comment later, // when we've computed any disambiguation. oneofInsertPoints[*field.OneofIndex] = g.Buffer.Len() dname := "is" + ccTypeName + "_" + fname oneofFieldName[*field.OneofIndex] = fname oneofDisc[*field.OneofIndex] = dname tag := `protobuf_oneof:"` + odp.GetName() + `"` g.P(Annotate(message.file, oneofFullPath, fname), " ", dname, " `", tag, "`") } if *field.Type == descriptor.FieldDescriptorProto_TYPE_MESSAGE { desc := g.ObjectNamed(field.GetTypeName()) if d, ok := desc.(*Descriptor); ok && d.GetOptions().GetMapEntry() { // Figure out the Go types and tags for the key and value types. keyField, valField := d.Field[0], d.Field[1] keyType, keyWire := g.GoType(d, keyField) valType, valWire := g.GoType(d, valField) keyTag, valTag := g.goTag(d, keyField, keyWire), g.goTag(d, valField, valWire) // We don't use stars, except for message-typed values. // Message and enum types are the only two possibly foreign types used in maps, // so record their use. They are not permitted as map keys. keyType = strings.TrimPrefix(keyType, "*") switch *valField.Type { case descriptor.FieldDescriptorProto_TYPE_ENUM: valType = strings.TrimPrefix(valType, "*") g.RecordTypeUse(valField.GetTypeName()) case descriptor.FieldDescriptorProto_TYPE_MESSAGE: g.RecordTypeUse(valField.GetTypeName()) default: valType = strings.TrimPrefix(valType, "*") } typename = fmt.Sprintf("map[%s]%s", keyType, valType) mapFieldTypes[field] = typename // record for the getter generation tag += fmt.Sprintf(" protobuf_key:%s protobuf_val:%s", keyTag, valTag) } } fieldTypes[field] = typename if oneof { tname := ccTypeName + "_" + fieldName // It is possible for this to collide with a message or enum // nested in this message. Check for collisions. for { ok := true for _, desc := range message.nested { if CamelCaseSlice(desc.TypeName()) == tname { ok = false break } } for _, enum := range message.enums { if CamelCaseSlice(enum.TypeName()) == tname { ok = false break } } if !ok { tname += "_" continue } break } oneofTypeName[field] = tname continue } fieldDeprecated := "" if field.GetOptions().GetDeprecated() { fieldDeprecated = deprecationComment } fieldFullPath := fmt.Sprintf("%s,%d,%d", message.path, messageFieldPath, i) g.PrintComments(fieldFullPath) g.P(Annotate(message.file, fieldFullPath, fieldName), "\t", typename, "\t`", tag, "`", fieldDeprecated) g.RecordTypeUse(field.GetTypeName()) } g.P("XXX_NoUnkeyedLiteral\tstruct{} `json:\"-\"`") // prevent unkeyed struct literals if len(message.ExtensionRange) > 0 { messageset := "" if opts := message.Options; opts != nil && opts.GetMessageSetWireFormat() { messageset = "protobuf_messageset:\"1\" " } g.P(g.Pkg["proto"], ".XXX_InternalExtensions `", messageset, "json:\"-\"`") } g.P("XXX_unrecognized\t[]byte `json:\"-\"`") g.P("XXX_sizecache\tint32 `json:\"-\"`") g.Out() g.P("}") // Update g.Buffer to list valid oneof types. // We do this down here, after we've disambiguated the oneof type names. // We go in reverse order of insertion point to avoid invalidating offsets. for oi := int32(len(message.OneofDecl)); oi >= 0; oi-- { ip := oneofInsertPoints[oi] all := g.Buffer.Bytes() rem := all[ip:] g.Buffer = bytes.NewBuffer(all[:ip:ip]) // set cap so we don't scribble on rem oldLen := g.Buffer.Len() for _, field := range message.Field { if field.OneofIndex == nil || *field.OneofIndex != oi { continue } g.P("//\t*", oneofTypeName[field]) } // If we've inserted text, we also need to fix up affected annotations (as // they contain offsets that may need to be changed). offset := int32(g.Buffer.Len() - oldLen) ip32 := int32(ip) for _, anno := range g.annotations { if *anno.Begin >= ip32 { *anno.Begin += offset } if *anno.End >= ip32 { *anno.End += offset } } g.Buffer.Write(rem) } // Reset, String and ProtoMessage methods. g.P("func (m *", ccTypeName, ") Reset() { *m = ", ccTypeName, "{} }") g.P("func (m *", ccTypeName, ") String() string { return ", g.Pkg["proto"], ".CompactTextString(m) }") g.P("func (*", ccTypeName, ") ProtoMessage() {}") var indexes []string for m := message; m != nil; m = m.parent { indexes = append([]string{strconv.Itoa(m.index)}, indexes...) } g.P("func (*", ccTypeName, ") Descriptor() ([]byte, []int) {") g.In() g.P("return ", g.file.VarName(), ", []int{", strings.Join(indexes, ", "), "}") g.Out() g.P("}") // TODO: Revisit the decision to use a XXX_WellKnownType method // if we change proto.MessageName to work with multiple equivalents. if message.file.GetPackage() == "google.protobuf" && wellKnownTypes[message.GetName()] { g.P("func (*", ccTypeName, `) XXX_WellKnownType() string { return "`, message.GetName(), `" }`) } // Extension support methods var hasExtensions, isMessageSet bool if len(message.ExtensionRange) > 0 { hasExtensions = true // message_set_wire_format only makes sense when extensions are defined. if opts := message.Options; opts != nil && opts.GetMessageSetWireFormat() { isMessageSet = true g.P() g.P("func (m *", ccTypeName, ") MarshalJSON() ([]byte, error) {") g.In() g.P("return ", g.Pkg["proto"], ".MarshalMessageSetJSON(&m.XXX_InternalExtensions)") g.Out() g.P("}") g.P("func (m *", ccTypeName, ") UnmarshalJSON(buf []byte) error {") g.In() g.P("return ", g.Pkg["proto"], ".UnmarshalMessageSetJSON(buf, &m.XXX_InternalExtensions)") g.Out() g.P("}") } g.P() g.P("var extRange_", ccTypeName, " = []", g.Pkg["proto"], ".ExtensionRange{") g.In() for _, r := range message.ExtensionRange { end := fmt.Sprint(*r.End - 1) // make range inclusive on both ends g.P("{Start: ", r.Start, ", End: ", end, "},") } g.Out() g.P("}") g.P("func (*", ccTypeName, ") ExtensionRangeArray() []", g.Pkg["proto"], ".ExtensionRange {") g.In() g.P("return extRange_", ccTypeName) g.Out() g.P("}") } // TODO: It does not scale to keep adding another method for every // operation on protos that we want to switch over to using the // table-driven approach. Instead, we should only add a single method // that allows getting access to the *InternalMessageInfo struct and then // calling Unmarshal, Marshal, Merge, Size, and Discard directly on that. // Wrapper for table-driven marshaling and unmarshaling. g.P("func (m *", ccTypeName, ") XXX_Unmarshal(b []byte) error {") g.In() g.P("return xxx_messageInfo_", ccTypeName, ".Unmarshal(m, b)") g.Out() g.P("}") g.P("func (m *", ccTypeName, ") XXX_Marshal(b []byte, deterministic bool) ([]byte, error) {") g.In() g.P("return xxx_messageInfo_", ccTypeName, ".Marshal(b, m, deterministic)") g.Out() g.P("}") g.P("func (dst *", ccTypeName, ") XXX_Merge(src ", g.Pkg["proto"], ".Message) {") g.In() g.P("xxx_messageInfo_", ccTypeName, ".Merge(dst, src)") g.Out() g.P("}") g.P("func (m *", ccTypeName, ") XXX_Size() int {") // avoid name clash with "Size" field in some message g.In() g.P("return xxx_messageInfo_", ccTypeName, ".Size(m)") g.Out() g.P("}") g.P("func (m *", ccTypeName, ") XXX_DiscardUnknown() {") g.In() g.P("xxx_messageInfo_", ccTypeName, ".DiscardUnknown(m)") g.Out() g.P("}") g.P("var xxx_messageInfo_", ccTypeName, " ", g.Pkg["proto"], ".InternalMessageInfo") // Default constants defNames := make(map[*descriptor.FieldDescriptorProto]string) for _, field := range message.Field { def := field.GetDefaultValue() if def == "" { continue } fieldname := "Default_" + ccTypeName + "_" + CamelCase(*field.Name) defNames[field] = fieldname typename, _ := g.GoType(message, field) if typename[0] == '*' { typename = typename[1:] } kind := "const " switch { case typename == "bool": case typename == "string": def = strconv.Quote(def) case typename == "[]byte": def = "[]byte(" + strconv.Quote(unescape(def)) + ")" kind = "var " case def == "inf", def == "-inf", def == "nan": // These names are known to, and defined by, the protocol language. switch def { case "inf": def = "math.Inf(1)" case "-inf": def = "math.Inf(-1)" case "nan": def = "math.NaN()" } if *field.Type == descriptor.FieldDescriptorProto_TYPE_FLOAT { def = "float32(" + def + ")" } kind = "var " case *field.Type == descriptor.FieldDescriptorProto_TYPE_ENUM: // Must be an enum. Need to construct the prefixed name. obj := g.ObjectNamed(field.GetTypeName()) var enum *EnumDescriptor if id, ok := obj.(*ImportedDescriptor); ok { // The enum type has been publicly imported. enum, _ = id.o.(*EnumDescriptor) } else { enum, _ = obj.(*EnumDescriptor) } if enum == nil { log.Printf("don't know how to generate constant for %s", fieldname) continue } def = g.DefaultPackageName(obj) + enum.prefix() + def } g.P(kind, fieldname, " ", typename, " = ", def) g.file.addExport(message, constOrVarSymbol{fieldname, kind, ""}) } g.P() // Oneof per-field types, discriminants and getters. // // Generate unexported named types for the discriminant interfaces. // We shouldn't have to do this, but there was (~19 Aug 2015) a compiler/linker bug // that was triggered by using anonymous interfaces here. // TODO: Revisit this and consider reverting back to anonymous interfaces. for oi := range message.OneofDecl { dname := oneofDisc[int32(oi)] g.P("type ", dname, " interface {") g.In() g.P(dname, "()") g.Out() g.P("}") } g.P() var oneofTypes []string for i, field := range message.Field { if field.OneofIndex == nil { continue } _, wiretype := g.GoType(message, field) tag := "protobuf:" + g.goTag(message, field, wiretype) fieldFullPath := fmt.Sprintf("%s,%d,%d", message.path, messageFieldPath, i) g.P("type ", Annotate(message.file, fieldFullPath, oneofTypeName[field]), " struct{ ", Annotate(message.file, fieldFullPath, fieldNames[field]), " ", fieldTypes[field], " `", tag, "` }") g.RecordTypeUse(field.GetTypeName()) oneofTypes = append(oneofTypes, oneofTypeName[field]) } g.P() for _, field := range message.Field { if field.OneofIndex == nil { continue } g.P("func (*", oneofTypeName[field], ") ", oneofDisc[*field.OneofIndex], "() {}") } g.P() for oi := range message.OneofDecl { fname := oneofFieldName[int32(oi)] oneofFullPath := fmt.Sprintf("%s,%d,%d", message.path, messageOneofPath, oi) g.P("func (m *", ccTypeName, ") ", Annotate(message.file, oneofFullPath, "Get"+fname), "() ", oneofDisc[int32(oi)], " {") g.P("if m != nil { return m.", fname, " }") g.P("return nil") g.P("}") } g.P() // Field getters for i, field := range message.Field { oneof := field.OneofIndex != nil fname := fieldNames[field] typename, _ := g.GoType(message, field) if t, ok := mapFieldTypes[field]; ok { typename = t } mname := fieldGetterNames[field] star := "" if needsStar(*field.Type) && typename[0] == '*' { typename = typename[1:] star = "*" } fieldFullPath := fmt.Sprintf("%s,%d,%d", message.path, messageFieldPath, i) if field.GetOptions().GetDeprecated() { g.P(deprecationComment) } g.P("func (m *", ccTypeName, ") ", Annotate(message.file, fieldFullPath, mname), "() "+typename+" {") g.In() def, hasDef := defNames[field] typeDefaultIsNil := false // whether this field type's default value is a literal nil unless specified switch *field.Type { case descriptor.FieldDescriptorProto_TYPE_BYTES: typeDefaultIsNil = !hasDef case descriptor.FieldDescriptorProto_TYPE_GROUP, descriptor.FieldDescriptorProto_TYPE_MESSAGE: typeDefaultIsNil = true } if isRepeated(field) { typeDefaultIsNil = true } if typeDefaultIsNil && !oneof { // A bytes field with no explicit default needs less generated code, // as does a message or group field, or a repeated field. g.P("if m != nil {") g.In() g.P("return m." + fname) g.Out() g.P("}") g.P("return nil") g.Out() g.P("}") g.P() continue } if !oneof { if message.proto3() { g.P("if m != nil {") } else { g.P("if m != nil && m." + fname + " != nil {") } g.In() g.P("return " + star + "m." + fname) g.Out() g.P("}") } else { uname := oneofFieldName[*field.OneofIndex] tname := oneofTypeName[field] g.P("if x, ok := m.Get", uname, "().(*", tname, "); ok {") g.P("return x.", fname) g.P("}") } if hasDef { if *field.Type != descriptor.FieldDescriptorProto_TYPE_BYTES { g.P("return " + def) } else { // The default is a []byte var. // Make a copy when returning it to be safe. g.P("return append([]byte(nil), ", def, "...)") } } else { switch *field.Type { case descriptor.FieldDescriptorProto_TYPE_BOOL: g.P("return false") case descriptor.FieldDescriptorProto_TYPE_STRING: g.P(`return ""`) case descriptor.FieldDescriptorProto_TYPE_GROUP, descriptor.FieldDescriptorProto_TYPE_MESSAGE, descriptor.FieldDescriptorProto_TYPE_BYTES: // This is only possible for oneof fields. g.P("return nil") case descriptor.FieldDescriptorProto_TYPE_ENUM: // The default default for an enum is the first value in the enum, // not zero. obj := g.ObjectNamed(field.GetTypeName()) var enum *EnumDescriptor if id, ok := obj.(*ImportedDescriptor); ok { // The enum type has been publicly imported. enum, _ = id.o.(*EnumDescriptor) } else { enum, _ = obj.(*EnumDescriptor) } if enum == nil { log.Printf("don't know how to generate getter for %s", field.GetName()) continue } if len(enum.Value) == 0 { g.P("return 0 // empty enum") } else { first := enum.Value[0].GetName() g.P("return ", g.DefaultPackageName(obj)+enum.prefix()+first) } default: g.P("return 0") } } g.Out() g.P("}") g.P() } if !message.group { ms := &messageSymbol{ sym: ccTypeName, hasExtensions: hasExtensions, isMessageSet: isMessageSet, oneofTypes: oneofTypes, } g.file.addExport(message, ms) } // Oneof functions if len(message.OneofDecl) > 0 { fieldWire := make(map[*descriptor.FieldDescriptorProto]string) // method enc := "_" + ccTypeName + "_OneofMarshaler" dec := "_" + ccTypeName + "_OneofUnmarshaler" size := "_" + ccTypeName + "_OneofSizer" encSig := "(msg " + g.Pkg["proto"] + ".Message, b *" + g.Pkg["proto"] + ".Buffer) error" decSig := "(msg " + g.Pkg["proto"] + ".Message, tag, wire int, b *" + g.Pkg["proto"] + ".Buffer) (bool, error)" sizeSig := "(msg " + g.Pkg["proto"] + ".Message) (n int)" g.P("// XXX_OneofFuncs is for the internal use of the proto package.") g.P("func (*", ccTypeName, ") XXX_OneofFuncs() (func", encSig, ", func", decSig, ", func", sizeSig, ", []interface{}) {") g.P("return ", enc, ", ", dec, ", ", size, ", []interface{}{") for _, field := range message.Field { if field.OneofIndex == nil { continue } g.P("(*", oneofTypeName[field], ")(nil),") } g.P("}") g.P("}") g.P() // marshaler g.P("func ", enc, encSig, " {") g.P("m := msg.(*", ccTypeName, ")") for oi, odp := range message.OneofDecl { g.P("// ", odp.GetName()) fname := oneofFieldName[int32(oi)] g.P("switch x := m.", fname, ".(type) {") for _, field := range message.Field { if field.OneofIndex == nil || int(*field.OneofIndex) != oi { continue } g.P("case *", oneofTypeName[field], ":") var wire, pre, post string val := "x." + fieldNames[field] // overridden for TYPE_BOOL canFail := false // only TYPE_MESSAGE and TYPE_GROUP can fail switch *field.Type { case descriptor.FieldDescriptorProto_TYPE_DOUBLE: wire = "WireFixed64" pre = "b.EncodeFixed64(" + g.Pkg["math"] + ".Float64bits(" post = "))" case descriptor.FieldDescriptorProto_TYPE_FLOAT: wire = "WireFixed32" pre = "b.EncodeFixed32(uint64(" + g.Pkg["math"] + ".Float32bits(" post = ")))" case descriptor.FieldDescriptorProto_TYPE_INT64, descriptor.FieldDescriptorProto_TYPE_UINT64: wire = "WireVarint" pre, post = "b.EncodeVarint(uint64(", "))" case descriptor.FieldDescriptorProto_TYPE_INT32, descriptor.FieldDescriptorProto_TYPE_UINT32, descriptor.FieldDescriptorProto_TYPE_ENUM: wire = "WireVarint" pre, post = "b.EncodeVarint(uint64(", "))" case descriptor.FieldDescriptorProto_TYPE_FIXED64, descriptor.FieldDescriptorProto_TYPE_SFIXED64: wire = "WireFixed64" pre, post = "b.EncodeFixed64(uint64(", "))" case descriptor.FieldDescriptorProto_TYPE_FIXED32, descriptor.FieldDescriptorProto_TYPE_SFIXED32: wire = "WireFixed32" pre, post = "b.EncodeFixed32(uint64(", "))" case descriptor.FieldDescriptorProto_TYPE_BOOL: // bool needs special handling. g.P("t := uint64(0)") g.P("if ", val, " { t = 1 }") val = "t" wire = "WireVarint" pre, post = "b.EncodeVarint(", ")" case descriptor.FieldDescriptorProto_TYPE_STRING: wire = "WireBytes" pre, post = "b.EncodeStringBytes(", ")" case descriptor.FieldDescriptorProto_TYPE_GROUP: wire = "WireStartGroup" pre, post = "b.Marshal(", ")" canFail = true case descriptor.FieldDescriptorProto_TYPE_MESSAGE: wire = "WireBytes" pre, post = "b.EncodeMessage(", ")" canFail = true case descriptor.FieldDescriptorProto_TYPE_BYTES: wire = "WireBytes" pre, post = "b.EncodeRawBytes(", ")" case descriptor.FieldDescriptorProto_TYPE_SINT32: wire = "WireVarint" pre, post = "b.EncodeZigzag32(uint64(", "))" case descriptor.FieldDescriptorProto_TYPE_SINT64: wire = "WireVarint" pre, post = "b.EncodeZigzag64(uint64(", "))" default: g.Fail("unhandled oneof field type ", field.Type.String()) } fieldWire[field] = wire g.P("b.EncodeVarint(", field.Number, "<<3|", g.Pkg["proto"], ".", wire, ")") if !canFail { g.P(pre, val, post) } else { g.P("if err := ", pre, val, post, "; err != nil {") g.P("return err") g.P("}") } if *field.Type == descriptor.FieldDescriptorProto_TYPE_GROUP { g.P("b.EncodeVarint(", field.Number, "<<3|", g.Pkg["proto"], ".WireEndGroup)") } } g.P("case nil:") g.P("default: return ", g.Pkg["fmt"], `.Errorf("`, ccTypeName, ".", fname, ` has unexpected type %T", x)`) g.P("}") } g.P("return nil") g.P("}") g.P() // unmarshaler g.P("func ", dec, decSig, " {") g.P("m := msg.(*", ccTypeName, ")") g.P("switch tag {") for _, field := range message.Field { if field.OneofIndex == nil { continue } odp := message.OneofDecl[int(*field.OneofIndex)] g.P("case ", field.Number, ": // ", odp.GetName(), ".", *field.Name) g.P("if wire != ", g.Pkg["proto"], ".", fieldWire[field], " {") g.P("return true, ", g.Pkg["proto"], ".ErrInternalBadWireType") g.P("}") lhs := "x, err" // overridden for TYPE_MESSAGE and TYPE_GROUP var dec, cast, cast2 string switch *field.Type { case descriptor.FieldDescriptorProto_TYPE_DOUBLE: dec, cast = "b.DecodeFixed64()", g.Pkg["math"]+".Float64frombits" case descriptor.FieldDescriptorProto_TYPE_FLOAT: dec, cast, cast2 = "b.DecodeFixed32()", "uint32", g.Pkg["math"]+".Float32frombits" case descriptor.FieldDescriptorProto_TYPE_INT64: dec, cast = "b.DecodeVarint()", "int64" case descriptor.FieldDescriptorProto_TYPE_UINT64: dec = "b.DecodeVarint()" case descriptor.FieldDescriptorProto_TYPE_INT32: dec, cast = "b.DecodeVarint()", "int32" case descriptor.FieldDescriptorProto_TYPE_FIXED64: dec = "b.DecodeFixed64()" case descriptor.FieldDescriptorProto_TYPE_FIXED32: dec, cast = "b.DecodeFixed32()", "uint32" case descriptor.FieldDescriptorProto_TYPE_BOOL: dec = "b.DecodeVarint()" // handled specially below case descriptor.FieldDescriptorProto_TYPE_STRING: dec = "b.DecodeStringBytes()" case descriptor.FieldDescriptorProto_TYPE_GROUP: g.P("msg := new(", fieldTypes[field][1:], ")") // drop star lhs = "err" dec = "b.DecodeGroup(msg)" // handled specially below case descriptor.FieldDescriptorProto_TYPE_MESSAGE: g.P("msg := new(", fieldTypes[field][1:], ")") // drop star lhs = "err" dec = "b.DecodeMessage(msg)" // handled specially below case descriptor.FieldDescriptorProto_TYPE_BYTES: dec = "b.DecodeRawBytes(true)" case descriptor.FieldDescriptorProto_TYPE_UINT32: dec, cast = "b.DecodeVarint()", "uint32" case descriptor.FieldDescriptorProto_TYPE_ENUM: dec, cast = "b.DecodeVarint()", fieldTypes[field] case descriptor.FieldDescriptorProto_TYPE_SFIXED32: dec, cast = "b.DecodeFixed32()", "int32" case descriptor.FieldDescriptorProto_TYPE_SFIXED64: dec, cast = "b.DecodeFixed64()", "int64" case descriptor.FieldDescriptorProto_TYPE_SINT32: dec, cast = "b.DecodeZigzag32()", "int32" case descriptor.FieldDescriptorProto_TYPE_SINT64: dec, cast = "b.DecodeZigzag64()", "int64" default: g.Fail("unhandled oneof field type ", field.Type.String()) } g.P(lhs, " := ", dec) val := "x" if cast != "" { val = cast + "(" + val + ")" } if cast2 != "" { val = cast2 + "(" + val + ")" } switch *field.Type { case descriptor.FieldDescriptorProto_TYPE_BOOL: val += " != 0" case descriptor.FieldDescriptorProto_TYPE_GROUP, descriptor.FieldDescriptorProto_TYPE_MESSAGE: val = "msg" } g.P("m.", oneofFieldName[*field.OneofIndex], " = &", oneofTypeName[field], "{", val, "}") g.P("return true, err") } g.P("default: return false, nil") g.P("}") g.P("}") g.P() // sizer g.P("func ", size, sizeSig, " {") g.P("m := msg.(*", ccTypeName, ")") for oi, odp := range message.OneofDecl { g.P("// ", odp.GetName()) fname := oneofFieldName[int32(oi)] g.P("switch x := m.", fname, ".(type) {") for _, field := range message.Field { if field.OneofIndex == nil || int(*field.OneofIndex) != oi { continue } g.P("case *", oneofTypeName[field], ":") val := "x." + fieldNames[field] var varint, fixed string switch *field.Type { case descriptor.FieldDescriptorProto_TYPE_DOUBLE: fixed = "8" case descriptor.FieldDescriptorProto_TYPE_FLOAT: fixed = "4" case descriptor.FieldDescriptorProto_TYPE_INT64, descriptor.FieldDescriptorProto_TYPE_UINT64, descriptor.FieldDescriptorProto_TYPE_INT32, descriptor.FieldDescriptorProto_TYPE_UINT32, descriptor.FieldDescriptorProto_TYPE_ENUM: varint = val case descriptor.FieldDescriptorProto_TYPE_FIXED64, descriptor.FieldDescriptorProto_TYPE_SFIXED64: fixed = "8" case descriptor.FieldDescriptorProto_TYPE_FIXED32, descriptor.FieldDescriptorProto_TYPE_SFIXED32: fixed = "4" case descriptor.FieldDescriptorProto_TYPE_BOOL: fixed = "1" case descriptor.FieldDescriptorProto_TYPE_STRING: fixed = "len(" + val + ")" varint = fixed case descriptor.FieldDescriptorProto_TYPE_GROUP: fixed = g.Pkg["proto"] + ".Size(" + val + ")" case descriptor.FieldDescriptorProto_TYPE_MESSAGE: g.P("s := ", g.Pkg["proto"], ".Size(", val, ")") fixed = "s" varint = fixed case descriptor.FieldDescriptorProto_TYPE_BYTES: fixed = "len(" + val + ")" varint = fixed case descriptor.FieldDescriptorProto_TYPE_SINT32: varint = "(uint32(" + val + ") << 1) ^ uint32((int32(" + val + ") >> 31))" case descriptor.FieldDescriptorProto_TYPE_SINT64: varint = "uint64(" + val + " << 1) ^ uint64((int64(" + val + ") >> 63))" default: g.Fail("unhandled oneof field type ", field.Type.String()) } // Tag and wire varint is known statically, // so don't generate code for that part of the size computation. tagAndWireSize := proto.SizeVarint(uint64(*field.Number << 3)) // wire doesn't affect varint size g.P("n += ", tagAndWireSize, " // tag and wire") if varint != "" { g.P("n += ", g.Pkg["proto"], ".SizeVarint(uint64(", varint, "))") } if fixed != "" { g.P("n += ", fixed) } if *field.Type == descriptor.FieldDescriptorProto_TYPE_GROUP { g.P("n += ", tagAndWireSize, " // tag and wire") } } g.P("case nil:") g.P("default:") g.P("panic(", g.Pkg["fmt"], ".Sprintf(\"proto: unexpected type %T in oneof\", x))") g.P("}") } g.P("return n") g.P("}") g.P() } for _, ext := range message.ext { g.generateExtension(ext) } fullName := strings.Join(message.TypeName(), ".") if g.file.Package != nil { fullName = *g.file.Package + "." + fullName } g.addInitf("%s.RegisterType((*%s)(nil), %q)", g.Pkg["proto"], ccTypeName, fullName) // Register types for native map types. for _, k := range mapFieldKeys(mapFieldTypes) { fullName := strings.TrimPrefix(*k.TypeName, ".") g.addInitf("%s.RegisterMapType((%s)(nil), %q)", g.Pkg["proto"], mapFieldTypes[k], fullName) } } type byTypeName []*descriptor.FieldDescriptorProto func (a byTypeName) Len() int { return len(a) } func (a byTypeName) Swap(i, j int) { a[i], a[j] = a[j], a[i] } func (a byTypeName) Less(i, j int) bool { return *a[i].TypeName < *a[j].TypeName } // mapFieldKeys returns the keys of m in a consistent order. func mapFieldKeys(m map[*descriptor.FieldDescriptorProto]string) []*descriptor.FieldDescriptorProto { keys := make([]*descriptor.FieldDescriptorProto, 0, len(m)) for k := range m { keys = append(keys, k) } sort.Sort(byTypeName(keys)) return keys } var escapeChars = [256]byte{ 'a': '\a', 'b': '\b', 'f': '\f', 'n': '\n', 'r': '\r', 't': '\t', 'v': '\v', '\\': '\\', '"': '"', '\'': '\'', '?': '?', } // unescape reverses the "C" escaping that protoc does for default values of bytes fields. // It is best effort in that it effectively ignores malformed input. Seemingly invalid escape // sequences are conveyed, unmodified, into the decoded result. func unescape(s string) string { // NB: Sadly, we can't use strconv.Unquote because protoc will escape both // single and double quotes, but strconv.Unquote only allows one or the // other (based on actual surrounding quotes of its input argument). var out []byte for len(s) > 0 { // regular character, or too short to be valid escape if s[0] != '\\' || len(s) < 2 { out = append(out, s[0]) s = s[1:] } else if c := escapeChars[s[1]]; c != 0 { // escape sequence out = append(out, c) s = s[2:] } else if s[1] == 'x' || s[1] == 'X' { // hex escape, e.g. "\x80 if len(s) < 4 { // too short to be valid out = append(out, s[:2]...) s = s[2:] continue } v, err := strconv.ParseUint(s[2:4], 16, 8) if err != nil { out = append(out, s[:4]...) } else { out = append(out, byte(v)) } s = s[4:] } else if '0' <= s[1] && s[1] <= '7' { // octal escape, can vary from 1 to 3 octal digits; e.g., "\0" "\40" or "\164" // so consume up to 2 more bytes or up to end-of-string n := len(s[1:]) - len(strings.TrimLeft(s[1:], "01234567")) if n > 3 { n = 3 } v, err := strconv.ParseUint(s[1:1+n], 8, 8) if err != nil { out = append(out, s[:1+n]...) } else { out = append(out, byte(v)) } s = s[1+n:] } else { // bad escape, just propagate the slash as-is out = append(out, s[0]) s = s[1:] } } return string(out) } func (g *Generator) generateExtension(ext *ExtensionDescriptor) { ccTypeName := ext.DescName() extObj := g.ObjectNamed(*ext.Extendee) var extDesc *Descriptor if id, ok := extObj.(*ImportedDescriptor); ok { // This is extending a publicly imported message. // We need the underlying type for goTag. extDesc = id.o.(*Descriptor) } else { extDesc = extObj.(*Descriptor) } extendedType := "*" + g.TypeName(extObj) // always use the original field := ext.FieldDescriptorProto fieldType, wireType := g.GoType(ext.parent, field) tag := g.goTag(extDesc, field, wireType) g.RecordTypeUse(*ext.Extendee) if n := ext.FieldDescriptorProto.TypeName; n != nil { // foreign extension type g.RecordTypeUse(*n) } typeName := ext.TypeName() // Special case for proto2 message sets: If this extension is extending // proto2.bridge.MessageSet, and its final name component is "message_set_extension", // then drop that last component. // // TODO: This should be implemented in the text formatter rather than the generator. // In addition, the situation for when to apply this special case is implemented // differently in other languages: // https://github.com/google/protobuf/blob/aff10976/src/google/protobuf/text_format.cc#L1560 mset := false if extDesc.GetOptions().GetMessageSetWireFormat() && typeName[len(typeName)-1] == "message_set_extension" { typeName = typeName[:len(typeName)-1] mset = true } // For text formatting, the package must be exactly what the .proto file declares, // ignoring overrides such as the go_package option, and with no dot/underscore mapping. extName := strings.Join(typeName, ".") if g.file.Package != nil { extName = *g.file.Package + "." + extName } g.P("var ", ccTypeName, " = &", g.Pkg["proto"], ".ExtensionDesc{") g.In() g.P("ExtendedType: (", extendedType, ")(nil),") g.P("ExtensionType: (", fieldType, ")(nil),") g.P("Field: ", field.Number, ",") g.P(`Name: "`, extName, `",`) g.P("Tag: ", tag, ",") g.P(`Filename: "`, g.file.GetName(), `",`) g.Out() g.P("}") g.P() if mset { // Generate a bit more code to register with message_set.go. g.addInitf("%s.RegisterMessageSetType((%s)(nil), %d, %q)", g.Pkg["proto"], fieldType, *field.Number, extName) } g.file.addExport(ext, constOrVarSymbol{ccTypeName, "var", ""}) } func (g *Generator) generateInitFunction() { for _, enum := range g.file.enum { g.generateEnumRegistration(enum) } for _, d := range g.file.desc { for _, ext := range d.ext { g.generateExtensionRegistration(ext) } } for _, ext := range g.file.ext { g.generateExtensionRegistration(ext) } if len(g.init) == 0 { return } g.P("func init() {") g.In() for _, l := range g.init { g.P(l) } g.Out() g.P("}") g.init = nil } func (g *Generator) generateFileDescriptor(file *FileDescriptor) { // Make a copy and trim source_code_info data. // TODO: Trim this more when we know exactly what we need. pb := proto.Clone(file.FileDescriptorProto).(*descriptor.FileDescriptorProto) pb.SourceCodeInfo = nil b, err := proto.Marshal(pb) if err != nil { g.Fail(err.Error()) } var buf bytes.Buffer w, _ := gzip.NewWriterLevel(&buf, gzip.BestCompression) w.Write(b) w.Close() b = buf.Bytes() v := file.VarName() g.P() g.P("func init() { ", g.Pkg["proto"], ".RegisterFile(", strconv.Quote(*file.Name), ", ", v, ") }") g.P("var ", v, " = []byte{") g.In() g.P("// ", len(b), " bytes of a gzipped FileDescriptorProto") for len(b) > 0 { n := 16 if n > len(b) { n = len(b) } s := "" for _, c := range b[:n] { s += fmt.Sprintf("0x%02x,", c) } g.P(s) b = b[n:] } g.Out() g.P("}") } func (g *Generator) generateEnumRegistration(enum *EnumDescriptor) { // // We always print the full (proto-world) package name here. pkg := enum.File().GetPackage() if pkg != "" { pkg += "." } // The full type name typeName := enum.TypeName() // The full type name, CamelCased. ccTypeName := CamelCaseSlice(typeName) g.addInitf("%s.RegisterEnum(%q, %[3]s_name, %[3]s_value)", g.Pkg["proto"], pkg+ccTypeName, ccTypeName) } func (g *Generator) generateExtensionRegistration(ext *ExtensionDescriptor) { g.addInitf("%s.RegisterExtension(%s)", g.Pkg["proto"], ext.DescName()) } // And now lots of helper functions. // Is c an ASCII lower-case letter? func isASCIILower(c byte) bool { return 'a' <= c && c <= 'z' } // Is c an ASCII digit? func isASCIIDigit(c byte) bool { return '0' <= c && c <= '9' } // CamelCase returns the CamelCased name. // If there is an interior underscore followed by a lower case letter, // drop the underscore and convert the letter to upper case. // There is a remote possibility of this rewrite causing a name collision, // but it's so remote we're prepared to pretend it's nonexistent - since the // C++ generator lowercases names, it's extremely unlikely to have two fields // with different capitalizations. // In short, _my_field_name_2 becomes XMyFieldName_2. func CamelCase(s string) string { if s == "" { return "" } t := make([]byte, 0, 32) i := 0 if s[0] == '_' { // Need a capital letter; drop the '_'. t = append(t, 'X') i++ } // Invariant: if the next letter is lower case, it must be converted // to upper case. // That is, we process a word at a time, where words are marked by _ or // upper case letter. Digits are treated as words. for ; i < len(s); i++ { c := s[i] if c == '_' && i+1 < len(s) && isASCIILower(s[i+1]) { continue // Skip the underscore in s. } if isASCIIDigit(c) { t = append(t, c) continue } // Assume we have a letter now - if not, it's a bogus identifier. // The next word is a sequence of characters that must start upper case. if isASCIILower(c) { c ^= ' ' // Make it a capital letter. } t = append(t, c) // Guaranteed not lower case. // Accept lower case sequence that follows. for i+1 < len(s) && isASCIILower(s[i+1]) { i++ t = append(t, s[i]) } } return string(t) } // CamelCaseSlice is like CamelCase, but the argument is a slice of strings to // be joined with "_". func CamelCaseSlice(elem []string) string { return CamelCase(strings.Join(elem, "_")) } // dottedSlice turns a sliced name into a dotted name. func dottedSlice(elem []string) string { return strings.Join(elem, ".") } // Is this field optional? func isOptional(field *descriptor.FieldDescriptorProto) bool { return field.Label != nil && *field.Label == descriptor.FieldDescriptorProto_LABEL_OPTIONAL } // Is this field required? func isRequired(field *descriptor.FieldDescriptorProto) bool { return field.Label != nil && *field.Label == descriptor.FieldDescriptorProto_LABEL_REQUIRED } // Is this field repeated? func isRepeated(field *descriptor.FieldDescriptorProto) bool { return field.Label != nil && *field.Label == descriptor.FieldDescriptorProto_LABEL_REPEATED } // Is this field a scalar numeric type? func isScalar(field *descriptor.FieldDescriptorProto) bool { if field.Type == nil { return false } switch *field.Type { case descriptor.FieldDescriptorProto_TYPE_DOUBLE, descriptor.FieldDescriptorProto_TYPE_FLOAT, descriptor.FieldDescriptorProto_TYPE_INT64, descriptor.FieldDescriptorProto_TYPE_UINT64, descriptor.FieldDescriptorProto_TYPE_INT32, descriptor.FieldDescriptorProto_TYPE_FIXED64, descriptor.FieldDescriptorProto_TYPE_FIXED32, descriptor.FieldDescriptorProto_TYPE_BOOL, descriptor.FieldDescriptorProto_TYPE_UINT32, descriptor.FieldDescriptorProto_TYPE_ENUM, descriptor.FieldDescriptorProto_TYPE_SFIXED32, descriptor.FieldDescriptorProto_TYPE_SFIXED64, descriptor.FieldDescriptorProto_TYPE_SINT32, descriptor.FieldDescriptorProto_TYPE_SINT64: return true default: return false } } // badToUnderscore is the mapping function used to generate Go names from package names, // which can be dotted in the input .proto file. It replaces non-identifier characters such as // dot or dash with underscore. func badToUnderscore(r rune) rune { if unicode.IsLetter(r) || unicode.IsDigit(r) || r == '_' { return r } return '_' } // baseName returns the last path element of the name, with the last dotted suffix removed. func baseName(name string) string { // First, find the last element if i := strings.LastIndex(name, "/"); i >= 0 { name = name[i+1:] } // Now drop the suffix if i := strings.LastIndex(name, "."); i >= 0 { name = name[0:i] } return name } // The SourceCodeInfo message describes the location of elements of a parsed // .proto file by way of a "path", which is a sequence of integers that // describe the route from a FileDescriptorProto to the relevant submessage. // The path alternates between a field number of a repeated field, and an index // into that repeated field. The constants below define the field numbers that // are used. // // See descriptor.proto for more information about this. const ( // tag numbers in FileDescriptorProto packagePath = 2 // package messagePath = 4 // message_type enumPath = 5 // enum_type // tag numbers in DescriptorProto messageFieldPath = 2 // field messageMessagePath = 3 // nested_type messageEnumPath = 4 // enum_type messageOneofPath = 8 // oneof_decl // tag numbers in EnumDescriptorProto enumValuePath = 2 // value ) var supportTypeAliases bool func init() { for _, tag := range build.Default.ReleaseTags { if tag == "go1.9" { supportTypeAliases = true return } } }