2021-12-04 16:42:11 +00:00

434 lines
11 KiB
Go
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// Copyright 2017 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build 386 amd64 amd64p32
package cpu
import (
"fmt"
"strings"
)
const CacheLineSize = 64
// cpuid is implemented in cpu_x86.s.
func cpuid(eaxArg, ecxArg uint32) (eax, ebx, ecx, edx uint32)
// xgetbv with ecx = 0 is implemented in cpu_x86.s.
func xgetbv() (eax, edx uint32)
const (
// edx bits
cpuid_SSE2 = 1 << 26
// ecx bits
cpuid_SSE3 = 1 << 0
cpuid_PCLMULQDQ = 1 << 1
cpuid_SSSE3 = 1 << 9
cpuid_FMA = 1 << 12
cpuid_SSE41 = 1 << 19
cpuid_SSE42 = 1 << 20
cpuid_POPCNT = 1 << 23
cpuid_AES = 1 << 25
cpuid_OSXSAVE = 1 << 27
cpuid_AVX = 1 << 28
cpuid_CMPXCHG16B = 1 << 13
// ebx bits
cpuid_BMI1 = 1 << 3
cpuid_AVX2 = 1 << 5
cpuid_BMI2 = 1 << 8
cpuid_ERMS = 1 << 9
cpuid_ADX = 1 << 19
cpuid_AVX512F = 1 << 16
cpuid_AVX512DQ = 1 << 17
cpuid_AVX512BW = 1 << 30
cpuid_AVX512VL = 1 << 31
// edx bits
cpuid_Invariant_TSC = 1 << 8
)
func doinit() {
options = []option{
{"adx", &X86.HasADX},
{"aes", &X86.HasAES},
{"avx", &X86.HasAVX},
{"avx2", &X86.HasAVX2},
{"bmi1", &X86.HasBMI1},
{"bmi2", &X86.HasBMI2},
{"erms", &X86.HasERMS},
{"fma", &X86.HasFMA},
{"pclmulqdq", &X86.HasPCLMULQDQ},
{"popcnt", &X86.HasPOPCNT},
{"sse3", &X86.HasSSE3},
{"sse41", &X86.HasSSE41},
{"sse42", &X86.HasSSE42},
{"ssse3", &X86.HasSSSE3},
{"avx512f", &X86.HasAVX512F},
{"avx512dq", &X86.HasAVX512DQ},
{"avx512bw", &X86.HasAVX512BW},
{"avx512vl", &X86.HasAVX512VL},
{"invariant_tsc", &X86.HasInvariantTSC},
// sse2 set as last element so it can easily be removed again. See code below.
{"sse2", &X86.HasSSE2},
}
// Remove sse2 from options on amd64(p32) because SSE2 is a mandatory feature for these GOARCHs.
if GOARCH == "amd64" || GOARCH == "amd64p32" {
options = options[:len(options)-1]
}
maxID, _, _, _ := cpuid(0, 0)
if maxID < 1 {
return
}
_, _, ecx1, edx1 := cpuid(1, 0)
X86.HasSSE2 = isSet(edx1, cpuid_SSE2)
X86.HasSSE3 = isSet(ecx1, cpuid_SSE3)
X86.HasPCLMULQDQ = isSet(ecx1, cpuid_PCLMULQDQ)
X86.HasSSSE3 = isSet(ecx1, cpuid_SSSE3)
X86.HasFMA = isSet(ecx1, cpuid_FMA)
X86.HasSSE41 = isSet(ecx1, cpuid_SSE41)
X86.HasSSE42 = isSet(ecx1, cpuid_SSE42)
X86.HasPOPCNT = isSet(ecx1, cpuid_POPCNT)
X86.HasAES = isSet(ecx1, cpuid_AES)
X86.HasCMPXCHG16B = isSet(ecx1, cpuid_CMPXCHG16B)
X86.HasOSXSAVE = isSet(ecx1, cpuid_OSXSAVE)
osSupportsAVX := false
osSupportsAVX512 := false
// For XGETBV, OSXSAVE bit is required and sufficient.
if X86.HasOSXSAVE {
eax, _ := xgetbv()
// Check if XMM and YMM registers have OS support.
osSupportsAVX = isSet(eax, 1<<1) && isSet(eax, 1<<2)
// Check is ZMM registers have OS support.
osSupportsAVX512 = isSet(eax>>5, 7) && isSet(eax>>1, 3)
}
X86.HasAVX = isSet(ecx1, cpuid_AVX) && osSupportsAVX
if maxID < 7 {
return
}
_, ebx7, _, _ := cpuid(7, 0)
X86.HasBMI1 = isSet(ebx7, cpuid_BMI1)
X86.HasAVX2 = isSet(ebx7, cpuid_AVX2) && osSupportsAVX
X86.HasAVX512F = isSet(ebx7, cpuid_AVX512F) && osSupportsAVX512
X86.HasAVX512DQ = isSet(ebx7, cpuid_AVX512DQ) && osSupportsAVX512
X86.HasAVX512BW = isSet(ebx7, cpuid_AVX512BW) && osSupportsAVX512
X86.HasAVX512VL = isSet(ebx7, cpuid_AVX512VL) && osSupportsAVX512
X86.HasBMI2 = isSet(ebx7, cpuid_BMI2)
X86.HasERMS = isSet(ebx7, cpuid_ERMS)
X86.HasADX = isSet(ebx7, cpuid_ADX)
X86.Cache = getCacheSize()
X86.HasInvariantTSC = hasInvariantTSC()
X86.Family, X86.Model, X86.SteppingID = getVersionInfo()
X86.Signature = makeSignature(X86.Family, X86.Model)
X86.Name = getName()
X86.TSCFrequency = getNativeTSCFrequency(X86.Name, X86.Signature, X86.SteppingID)
}
func isSet(hwc uint32, value uint32) bool {
return hwc&value != 0
}
func hasInvariantTSC() bool {
if maxExtendedFunction() < 0x80000007 {
return false
}
_, _, _, edx := cpuid(0x80000007, 0)
return isSet(edx, cpuid_Invariant_TSC)
}
func getName() string {
if maxExtendedFunction() >= 0x80000004 {
v := make([]uint32, 0, 48)
for i := uint32(0); i < 3; i++ {
a, b, c, d := cpuid(0x80000002+i, 0)
v = append(v, a, b, c, d)
}
return strings.Trim(string(valAsString(v...)), " ")
}
return "unknown"
}
// getNativeTSCFrequency gets TSC frequency from CPUID,
// only supports Intel (Skylake or later microarchitecture) & key information is from Intel manual & kernel codes
// (especially this commit: https://github.com/torvalds/linux/commit/604dc9170f2435d27da5039a3efd757dceadc684).
func getNativeTSCFrequency(name, sign string, steppingID uint32) uint64 {
if vendorID() != Intel {
return 0
}
if maxFunctionID() < 0x15 {
return 0
}
// ApolloLake, GeminiLake, CannonLake (and presumably all new chipsets
// from this point) report the crystal frequency directly via CPUID.0x15.
// That's definitive data that we can rely upon.
eax, ebx, ecx, _ := cpuid(0x15, 0)
// If ebx is 0, the TSC/”core crystal clock” ratio is not enumerated.
// We won't provide TSC frequency detection in this situation.
if eax == 0 || ebx == 0 {
return 0
}
// Skylake, Kabylake and all variants of those two chipsets report a
// crystal frequency of zero.
if ecx == 0 { // Crystal clock frequency is not enumerated.
ecx = getCrystalClockFrequency(sign, steppingID)
}
// TSC frequency = “core crystal clock frequency” * EBX/EAX.
return uint64(ecx) * (uint64(ebx) / uint64(eax))
}
// Copied from: CPUID Signature values of DisplayFamily and DisplayModel,
// in Intel® 64 and IA-32 Architectures Software Developers Manual
// Volume 4: Model-Specific Registers
// & https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/intel-family.h
const (
IntelFam6SkylakeL = "06_4EH"
IntelFam6Skylake = "06_5EH"
IntelFam6XeonScalable = "06_55H"
IntelFam6KabylakeL = "06_8EH"
IntelFam6Kabylake = "06_9EH"
)
// getCrystalClockFrequency gets crystal clock frequency
// for Intel processors in which CPUID.15H.EBX[31:0] ÷ CPUID.0x15.EAX[31:0] is enumerated
// but CPUID.15H.ECX is not enumerated using this function to get nominal core crystal clock frequency.
//
// Actually these crystal clock frequencies provided by Intel hardcoded tables are not so accurate in some cases,
// e.g. SkyLake server CPU may have issue (All SKX subject the crystal to an EMI reduction circuit that
//reduces its actual frequency by (approximately) -0.25%):
// see https://lore.kernel.org/lkml/ff6dcea166e8ff8f2f6a03c17beab2cb436aa779.1513920414.git.len.brown@intel.com/
// for more details.
// With this report, I set a coefficient (0.9975) for IntelFam6SkyLakeX.
//
// Unlike the kernel way (mentioned in https://github.com/torvalds/linux/commit/604dc9170f2435d27da5039a3efd757dceadc684),
// I prefer the Intel hardcoded tables, (in <Intel® 64 and IA-32 Architectures Software Developers Manual, Volume 3>
// 18.7.3 Determining the Processor Base Frequency, Table 18-85. Nominal Core Crystal Clock Frequency)
// because after some testing (comparing with wall clock, see https://github.com/templexxx/tsc/tsc_test.go for more details),
// I found hardcoded tables are more accurate.
func getCrystalClockFrequency(sign string, steppingID uint32) uint32 {
if maxFunctionID() < 0x16 {
return 0
}
switch sign {
case IntelFam6SkylakeL:
return 24 * 1000 * 1000
case IntelFam6Skylake:
return 24 * 1000 * 1000
case IntelFam6XeonScalable:
// SKL-SP.
// see: https://community.intel.com/t5/Software-Tuning-Performance/How-to-detect-microarchitecture-on-Xeon-Scalable/m-p/1205162#M7633.
if steppingID == 0x2 || steppingID == 0x3 || steppingID == 0x4 {
return 25 * 1000 * 1000 * 0.9975
}
return 25 * 1000 * 1000 // TODO check other Xeon Scalable has no slow down issue.
case IntelFam6KabylakeL:
return 24 * 1000 * 1000
case IntelFam6Kabylake:
return 24 * 1000 * 1000
}
return 0
}
func getVersionInfo() (uint32, uint32, uint32) {
if maxFunctionID() < 0x1 {
return 0, 0, 0
}
eax, _, _, _ := cpuid(1, 0)
family := (eax >> 8) & 0xf
displayFamily := family
if family == 0xf {
displayFamily = ((eax >> 20) & 0xff) + family
}
model := (eax >> 4) & 0xf
displayModel := model
if family == 0x6 || family == 0xf {
displayModel = ((eax >> 12) & 0xf0) + model
}
return displayFamily, displayModel, eax & 0x7
}
// signature format: XX_XXH
func makeSignature(family, model uint32) string {
signature := strings.ToUpper(fmt.Sprintf("0%x_0%xH", family, model))
ss := strings.Split(signature, "_")
for i, s := range ss {
// Maybe insert too more `0`, drop it.
if len(s) > 2 {
s = s[1:]
ss[i] = s
}
}
return strings.Join(ss, "_")
}
// getCacheSize is from
// https://github.com/klauspost/cpuid/blob/5a626f7029c910cc8329dae5405ee4f65034bce5/cpuid.go#L723
func getCacheSize() Cache {
c := Cache{
L1I: -1,
L1D: -1,
L2: -1,
L3: -1,
}
vendor := vendorID()
switch vendor {
case Intel:
if maxFunctionID() < 4 {
return c
}
for i := uint32(0); ; i++ {
eax, ebx, ecx, _ := cpuid(4, i)
cacheType := eax & 15
if cacheType == 0 {
break
}
cacheLevel := (eax >> 5) & 7
coherency := int(ebx&0xfff) + 1
partitions := int((ebx>>12)&0x3ff) + 1
associativity := int((ebx>>22)&0x3ff) + 1
sets := int(ecx) + 1
size := associativity * partitions * coherency * sets
switch cacheLevel {
case 1:
if cacheType == 1 {
// 1 = Data Cache
c.L1D = size
} else if cacheType == 2 {
// 2 = Instruction Cache
c.L1I = size
} else {
if c.L1D < 0 {
c.L1I = size
}
if c.L1I < 0 {
c.L1I = size
}
}
case 2:
c.L2 = size
case 3:
c.L3 = size
}
}
case AMD, Hygon:
// Untested.
if maxExtendedFunction() < 0x80000005 {
return c
}
_, _, ecx, edx := cpuid(0x80000005, 0)
c.L1D = int(((ecx >> 24) & 0xFF) * 1024)
c.L1I = int(((edx >> 24) & 0xFF) * 1024)
if maxExtendedFunction() < 0x80000006 {
return c
}
_, _, ecx, _ = cpuid(0x80000006, 0)
c.L2 = int(((ecx >> 16) & 0xFFFF) * 1024)
}
return c
}
func maxFunctionID() uint32 {
a, _, _, _ := cpuid(0, 0)
return a
}
func maxExtendedFunction() uint32 {
eax, _, _, _ := cpuid(0x80000000, 0)
return eax
}
const (
Other = iota
Intel
AMD
VIA
Transmeta
NSC
KVM // Kernel-based Virtual Machine
MSVM // Microsoft Hyper-V or Windows Virtual PC
VMware
XenHVM
Bhyve
Hygon
)
// Except from http://en.wikipedia.org/wiki/CPUID#EAX.3D0:_Get_vendor_ID
var vendorMapping = map[string]int{
"AMDisbetter!": AMD,
"AuthenticAMD": AMD,
"CentaurHauls": VIA,
"GenuineIntel": Intel,
"TransmetaCPU": Transmeta,
"GenuineTMx86": Transmeta,
"Geode by NSC": NSC,
"VIA VIA VIA ": VIA,
"KVMKVMKVMKVM": KVM,
"Microsoft Hv": MSVM,
"VMwareVMware": VMware,
"XenVMMXenVMM": XenHVM,
"bhyve bhyve ": Bhyve,
"HygonGenuine": Hygon,
}
func vendorID() int {
_, b, c, d := cpuid(0, 0)
v := valAsString(b, d, c)
vend, ok := vendorMapping[string(v)]
if !ok {
return Other
}
return vend
}
func valAsString(values ...uint32) []byte {
r := make([]byte, 4*len(values))
for i, v := range values {
dst := r[i*4:]
dst[0] = byte(v & 0xff)
dst[1] = byte((v >> 8) & 0xff)
dst[2] = byte((v >> 16) & 0xff)
dst[3] = byte((v >> 24) & 0xff)
switch {
case dst[0] == 0:
return r[:i*4]
case dst[1] == 0:
return r[:i*4+1]
case dst[2] == 0:
return r[:i*4+2]
case dst[3] == 0:
return r[:i*4+3]
}
}
return r
}