derohe-miniblock-mod/blockchain/transaction_verify.go
2021-08-08 14:53:55 +00:00

616 lines
21 KiB
Go

// Copyright 2017-2021 DERO Project. All rights reserved.
// Use of this source code in any form is governed by RESEARCH license.
// license can be found in the LICENSE file.
// GPG: 0F39 E425 8C65 3947 702A 8234 08B2 0360 A03A 9DE8
//
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
// THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
// THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
package blockchain
import "fmt"
import "time"
/*import "bytes"
import "encoding/binary"
import "github.com/romana/rlog"
*/
import "sync"
import "runtime/debug"
import "golang.org/x/xerrors"
import "github.com/deroproject/graviton"
//import "github.com/romana/rlog"
import log "github.com/sirupsen/logrus"
import "github.com/deroproject/derohe/config"
import "github.com/deroproject/derohe/block"
import "github.com/deroproject/derohe/cryptography/crypto"
import "github.com/deroproject/derohe/transaction"
import "github.com/deroproject/derohe/cryptography/bn256"
//import "github.com/deroproject/derosuite/emission"
// caches x of transactions validity
// it is always atomic
// the cache is not txhash -> validity mapping
// instead it is txhash+expanded ringmembers
// if the entry exist, the tx is valid
// it stores special hash and first seen time
// this can only be used on expanded transactions
var transaction_valid_cache sync.Map
// this go routine continuously scans and cleans up the cache for expired entries
func clean_up_valid_cache() {
for {
time.Sleep(3600 * time.Second)
current_time := time.Now()
// track propagation upto 10 minutes
transaction_valid_cache.Range(func(k, value interface{}) bool {
first_seen := value.(time.Time)
if current_time.Sub(first_seen).Round(time.Second).Seconds() > 3600 {
transaction_valid_cache.Delete(k)
}
return true
})
}
}
/* Coinbase transactions need to verify registration
* */
func (chain *Blockchain) Verify_Transaction_Coinbase(cbl *block.Complete_Block, minertx *transaction.Transaction) (err error) {
if !minertx.IsCoinbase() { // transaction is not coinbase, return failed
return fmt.Errorf("tx is not coinbase")
}
// make sure miner address is registered
_, topos := chain.Store.Topo_store.binarySearchHeight(int64(cbl.Bl.Height - 1))
// load all db versions one by one and check whether the root hash matches the one mentioned in the tx
if len(topos) < 1 {
return fmt.Errorf("could not find previous height blocks %d", cbl.Bl.Height-1)
}
var balance_tree *graviton.Tree
for i := range topos {
toporecord, err := chain.Store.Topo_store.Read(topos[i])
if err != nil {
return fmt.Errorf("could not read block at height %d due to error while obtaining toporecord topos %+v processing %d err:%s\n", cbl.Bl.Height-1, topos, i, err)
}
ss, err := chain.Store.Balance_store.LoadSnapshot(toporecord.State_Version)
if err != nil {
return err
}
if balance_tree, err = ss.GetTree(config.BALANCE_TREE); err != nil {
return err
}
if _, err := balance_tree.Get(minertx.MinerAddress[:]); err != nil {
return fmt.Errorf("balance not obtained err %s\n", err)
//return false
}
}
return nil // success comes last
}
// only verifies height whether all height checks are good
func Verify_Transaction_NonCoinbase_Height(tx *transaction.Transaction, chain_height uint64) bool {
return Verify_Transaction_Height(tx.Height, chain_height)
}
func Verify_Transaction_Height(tx_height, chain_height uint64) bool{
if tx_height % config.BLOCK_BATCH_SIZE != 0 {
return false
}
if tx_height >= chain_height {
return false
}
if chain_height-tx_height <= 5 { // we should be atleast 5 steps from top
return false
}
comp := (chain_height / config.BLOCK_BATCH_SIZE) - (tx_height / config.BLOCK_BATCH_SIZE)
if comp ==0 || comp ==1 {
return true
}else{
return false
}
}
// all non miner tx must be non-coinbase tx
// each check is placed in a separate block of code, to avoid ambigous code or faulty checks
// all check are placed and not within individual functions ( so as we cannot skip a check )
// This function verifies tx fully, means all checks,
// if the transaction has passed the check it can be added to mempool, relayed or added to blockchain
// the transaction has already been deserialized thats it
// It also expands the transactions, using the repective state trie
func (chain *Blockchain) Verify_Transaction_NonCoinbase(hf_version int64, tx *transaction.Transaction) (err error) {
var tx_hash crypto.Hash
defer func() { // safety so if anything wrong happens, verification fails
if r := recover(); r != nil {
logger.WithFields(log.Fields{"txid": tx_hash}).Warnf("Recovered while Verifying transaction, failed verification, Stack trace below")
logger.Warnf("Stack trace \n%s", debug.Stack())
err = fmt.Errorf("Stack Trace %s", debug.Stack())
}
}()
if tx.Version != 1 {
return fmt.Errorf("TX should be version 1")
}
tx_hash = tx.GetHash()
if tx.TransactionType == transaction.REGISTRATION {
if _, ok := transaction_valid_cache.Load(tx_hash); ok {
return nil //logger.Infof("Found in cache %s ",tx_hash)
} else {
//logger.Infof("TX not found in cache %s len %d ",tx_hash, len(tmp_buffer))
}
if tx.IsRegistrationValid() {
transaction_valid_cache.Store(tx_hash, time.Now()) // signature got verified, cache it
return nil
}
return fmt.Errorf("Registration has invalid signature")
}
// currently we allow following types of transaction
if !(tx.TransactionType == transaction.NORMAL || tx.TransactionType == transaction.SC_TX || tx.TransactionType == transaction.BURN_TX) {
return fmt.Errorf("Unknown transaction type")
}
if tx.TransactionType == transaction.BURN_TX {
if tx.Value == 0 {
return fmt.Errorf("Burn Value cannot be zero")
}
}
// avoid some bugs lurking elsewhere
if tx.Height != uint64(int64(tx.Height)) {
return fmt.Errorf("invalid tx height")
}
for t := range tx.Payloads {
// check sanity
if tx.Payloads[t].Statement.RingSize != uint64(len(tx.Payloads[t].Statement.Publickeylist_pointers)/int(tx.Payloads[t].Statement.Bytes_per_publickey)) {
return fmt.Errorf("corrupted key pointers ringsize")
}
if tx.Payloads[t].Statement.RingSize < 2 { // ring size minimum 4
return fmt.Errorf("RingSize cannot be less than 2")
}
if tx.Payloads[t].Statement.RingSize > 128 { // ring size current limited to 128
return fmt.Errorf("RingSize cannot be more than 128")
}
if !crypto.IsPowerOf2(len(tx.Payloads[t].Statement.Publickeylist_pointers) / int(tx.Payloads[t].Statement.Bytes_per_publickey)) {
return fmt.Errorf("corrupted key pointers")
}
// check duplicate ring members within the tx
{
key_map := map[string]bool{}
for i := 0; i < int(tx.Payloads[t].Statement.RingSize); i++ {
key_map[string(tx.Payloads[t].Statement.Publickeylist_pointers[i*int(tx.Payloads[t].Statement.Bytes_per_publickey):(i+1)*int(tx.Payloads[t].Statement.Bytes_per_publickey)])] = true
}
if len(key_map) != int(tx.Payloads[t].Statement.RingSize) {
return fmt.Errorf("Duplicated ring members")
}
}
tx.Payloads[t].Statement.CLn = tx.Payloads[t].Statement.CLn[:0]
tx.Payloads[t].Statement.CRn = tx.Payloads[t].Statement.CRn[:0]
}
match_topo := int64(1)
// transaction needs to be expanded. this expansion needs balance state
_, topos := chain.Store.Topo_store.binarySearchHeight(int64(tx.Height))
// load all db versions one by one and check whether the root hash matches the one mentioned in the tx
if len(topos) < 1 {
return fmt.Errorf("TX could NOT be expanded")
}
for i := range topos {
hash, err := chain.Load_Merkle_Hash(topos[i])
if err != nil {
continue
}
if hash == tx.Payloads[0].Statement.Roothash {
match_topo = topos[i]
break // we have found the balance tree with which it was built now lets verify
}
}
if match_topo < 0 {
return fmt.Errorf("mentioned balance tree not found, cannot verify TX")
}
var balance_tree *graviton.Tree
toporecord, err := chain.Store.Topo_store.Read(match_topo)
if err != nil {
return err
}
ss, err := chain.Store.Balance_store.LoadSnapshot(toporecord.State_Version)
if err != nil {
return err
}
if balance_tree, err = ss.GetTree(config.BALANCE_TREE); err != nil {
return err
}
if balance_tree == nil {
return fmt.Errorf("mentioned balance tree not found, cannot verify TX")
}
if _, ok := transaction_valid_cache.Load(tx_hash); ok {
return nil //logger.Infof("Found in cache %s ",tx_hash)
} else {
//logger.Infof("TX not found in cache %s len %d ",tx_hash, len(tmp_buffer))
}
//logger.Infof("dTX state tree has been found")
trees := map[crypto.Hash]*graviton.Tree{}
var zerohash crypto.Hash
trees[zerohash] = balance_tree // initialize main tree by default
for t := range tx.Payloads {
tx.Payloads[t].Statement.Publickeylist_compressed = tx.Payloads[t].Statement.Publickeylist_compressed[:0]
tx.Payloads[t].Statement.Publickeylist = tx.Payloads[t].Statement.Publickeylist[:0]
var tree *graviton.Tree
if _, ok := trees[tx.Payloads[t].SCID]; ok {
tree = trees[tx.Payloads[t].SCID]
} else {
// fmt.Printf("SCID loading %s tree\n", tx.Payloads[t].SCID)
tree, _ = ss.GetTree(string(tx.Payloads[t].SCID[:]))
trees[tx.Payloads[t].SCID] = tree
}
// now lets calculate CLn and CRn
for i := 0; i < int(tx.Payloads[t].Statement.RingSize); i++ {
key_pointer := tx.Payloads[t].Statement.Publickeylist_pointers[i*int(tx.Payloads[t].Statement.Bytes_per_publickey) : (i+1)*int(tx.Payloads[t].Statement.Bytes_per_publickey)]
_, key_compressed, balance_serialized, err := tree.GetKeyValueFromHash(key_pointer)
// if destination address could be found be found in main balance tree, assume its zero balance
needs_init := false
if err != nil && !tx.Payloads[t].SCID.IsZero() {
if xerrors.Is(err, graviton.ErrNotFound) { // if the address is not found, lookup in main tree
_, key_compressed, _, err = balance_tree.GetKeyValueFromHash(key_pointer)
if err != nil {
return fmt.Errorf("balance not obtained err %s\n", err)
}
needs_init = true
}
}
if err != nil {
return fmt.Errorf("balance not obtained err %s\n", err)
}
// decode public key and expand
{
var p bn256.G1
var pcopy [33]byte
copy(pcopy[:], key_compressed)
if err = p.DecodeCompressed(key_compressed[:]); err != nil {
return fmt.Errorf("key %d could not be decompressed", i)
}
tx.Payloads[t].Statement.Publickeylist_compressed = append(tx.Payloads[t].Statement.Publickeylist_compressed, pcopy)
tx.Payloads[t].Statement.Publickeylist = append(tx.Payloads[t].Statement.Publickeylist, &p)
if needs_init {
balance := crypto.ConstructElGamal(&p, crypto.ElGamal_BASE_G) // init zero balance
balance_serialized = balance.Serialize()
}
}
var ll, rr bn256.G1
ebalance := new(crypto.ElGamal).Deserialize(balance_serialized)
ll.Add(ebalance.Left, tx.Payloads[t].Statement.C[i])
tx.Payloads[t].Statement.CLn = append(tx.Payloads[t].Statement.CLn, &ll)
rr.Add(ebalance.Right, tx.Payloads[t].Statement.D)
tx.Payloads[t].Statement.CRn = append(tx.Payloads[t].Statement.CRn, &rr)
// prepare for another sub transaction
echanges := crypto.ConstructElGamal(tx.Payloads[t].Statement.C[i], tx.Payloads[t].Statement.D)
ebalance = new(crypto.ElGamal).Deserialize(balance_serialized).Add(echanges) // homomorphic addition of changes
tree.Put(key_compressed, ebalance.Serialize()) // reserialize and store temporarily, tree will be discarded after verification
}
}
// at this point has been completely expanded, verify the tx statement
for t := range tx.Payloads {
if !tx.Payloads[t].Proof.Verify(&tx.Payloads[t].Statement, tx.GetHash(), tx.Height, tx.Payloads[t].BurnValue) {
fmt.Printf("Statement %+v\n", tx.Payloads[t].Statement)
fmt.Printf("Proof %+v\n", tx.Payloads[t].Proof)
return fmt.Errorf("transaction statement %d verification failed", t)
}
}
// these transactions are done
if tx.TransactionType == transaction.NORMAL || tx.TransactionType == transaction.BURN_TX {
transaction_valid_cache.Store(tx_hash, time.Now()) // signature got verified, cache it
return nil
}
// we reach here if tx proofs are valid
if tx.TransactionType != transaction.SC_TX {
return fmt.Errorf("non sc transaction should never reach here")
}
if !tx.IsRegistrationValid() {
return fmt.Errorf("SC has invalid signature")
}
return nil
/*
var tx_hash crypto.Hash
var tx_serialized []byte // serialized tx
defer func() { // safety so if anything wrong happens, verification fails
if r := recover(); r != nil {
logger.WithFields(log.Fields{"txid": tx_hash}).Warnf("Recovered while Verifying transaction, failed verification, Stack trace below")
logger.Warnf("Stack trace \n%s", debug.Stack())
result = false
}
}()
tx_hash = tx.GetHash()
if tx.Version != 2 {
return false
}
// make sure atleast 1 vin and 1 vout are there
if len(tx.Vin) < 1 || len(tx.Vout) < 1 {
logger.WithFields(log.Fields{"txid": tx_hash}).Warnf("Incoming TX does NOT have atleast 1 vin and 1 vout")
return false
}
// this means some other checks have failed somewhere else
if tx.IsCoinbase() { // transaction coinbase must never come here
logger.WithFields(log.Fields{"txid": tx_hash}).Warnf("Coinbase tx in non coinbase path, Please investigate")
return false
}
// Vin can be only specific type rest all make the fail case
for i := 0; i < len(tx.Vin); i++ {
switch tx.Vin[i].(type) {
case transaction.Txin_gen:
return false // this is for coinbase so fail it
case transaction.Txin_to_key: // pass
default:
return false
}
}
if hf_version >= 2 {
if len(tx.Vout) >= config.MAX_VOUT {
rlog.Warnf("Tx %s has more Vouts than allowed limit 7 actual %d", tx_hash, len(tx.Vout))
return
}
}
// Vout can be only specific type rest all make th fail case
for i := 0; i < len(tx.Vout); i++ {
switch tx.Vout[i].Target.(type) {
case transaction.Txout_to_key: // pass
public_key := tx.Vout[i].Target.(transaction.Txout_to_key).Key
if !public_key.Public_Key_Valid() { // if public_key is not valid ( not a point on the curve reject the TX)
logger.WithFields(log.Fields{"txid": tx_hash}).Warnf("TX public is INVALID %s ", public_key)
return false
}
default:
return false
}
}
// Vout should have amount 0
for i := 0; i < len(tx.Vout); i++ {
if tx.Vout[i].Amount != 0 {
logger.WithFields(log.Fields{"txid": tx_hash, "Amount": tx.Vout[i].Amount}).Warnf("Amount must be zero in ringCT world")
return false
}
}
// check the mixin , it should be atleast 4 and should be same through out the tx ( all other inputs)
// someone did send a mixin of 3 in 12006 block height
// atlantis has minimum mixin of 5
if hf_version >= 2 {
mixin := len(tx.Vin[0].(transaction.Txin_to_key).Key_offsets)
if mixin < config.MIN_MIXIN {
logger.WithFields(log.Fields{"txid": tx_hash, "Mixin": mixin}).Warnf("Mixin cannot be more than %d.", config.MIN_MIXIN)
return false
}
if mixin >= config.MAX_MIXIN {
logger.WithFields(log.Fields{"txid": tx_hash, "Mixin": mixin}).Warnf("Mixin cannot be more than %d.", config.MAX_MIXIN)
return false
}
for i := 0; i < len(tx.Vin); i++ {
if mixin != len(tx.Vin[i].(transaction.Txin_to_key).Key_offsets) {
logger.WithFields(log.Fields{"txid": tx_hash, "Mixin": mixin}).Warnf("Mixin must be same for entire TX in ringCT world")
return false
}
}
}
// duplicate ringmembers are not allowed, check them here
// just in case protect ourselves as much as we can
for i := 0; i < len(tx.Vin); i++ {
ring_members := map[uint64]bool{} // create a separate map for each input
ring_member := uint64(0)
for j := 0; j < len(tx.Vin[i].(transaction.Txin_to_key).Key_offsets); j++ {
ring_member += tx.Vin[i].(transaction.Txin_to_key).Key_offsets[j]
if _, ok := ring_members[ring_member]; ok {
logger.WithFields(log.Fields{"txid": tx_hash, "input_index": i}).Warnf("Duplicate ring member within the TX")
return false
}
ring_members[ring_member] = true // add member to ring member
}
// rlog.Debugf("Ring members for %d %+v", i, ring_members )
}
// check whether the key image is duplicate within the inputs
// NOTE: a block wide key_image duplication is done during block testing but we are still keeping it
{
kimages := map[crypto.Hash]bool{}
for i := 0; i < len(tx.Vin); i++ {
if _, ok := kimages[tx.Vin[i].(transaction.Txin_to_key).K_image]; ok {
logger.WithFields(log.Fields{
"txid": tx_hash,
"kimage": tx.Vin[i].(transaction.Txin_to_key).K_image,
}).Warnf("TX using duplicate inputs within the TX")
return false
}
kimages[tx.Vin[i].(transaction.Txin_to_key).K_image] = true // add element to map for next check
}
}
// check whether the key image is low order attack, if yes reject it right now
for i := 0; i < len(tx.Vin); i++ {
k_image := crypto.Key(tx.Vin[i].(transaction.Txin_to_key).K_image)
curve_order := crypto.CurveOrder()
mult_result := crypto.ScalarMultKey(&k_image, &curve_order)
if *mult_result != crypto.Identity {
logger.WithFields(log.Fields{
"txid": tx_hash,
"kimage": tx.Vin[i].(transaction.Txin_to_key).K_image,
"curve_order": curve_order,
"mult_result": *mult_result,
"identity": crypto.Identity,
}).Warnf("TX contains a low order key image attack, but we are already safeguarded")
return false
}
}
// disallow old transactions with borrowmean signatures
if hf_version >= 2 {
switch tx.RctSignature.Get_Sig_Type() {
case ringct.RCTTypeSimple, ringct.RCTTypeFull:
return false
}
}
// check whether the TX contains a signature or NOT
switch tx.RctSignature.Get_Sig_Type() {
case ringct.RCTTypeSimpleBulletproof, ringct.RCTTypeSimple, ringct.RCTTypeFull: // default case, pass through
default:
logger.WithFields(log.Fields{"txid": tx_hash}).Warnf("TX does NOT contain a ringct signature. It is NOT possible")
return false
}
// check tx size for validity
if hf_version >= 2 {
tx_serialized = tx.Serialize()
if len(tx_serialized) >= config.CRYPTONOTE_MAX_TX_SIZE {
rlog.Warnf("tx %s rejected Size(%d) is more than allowed(%d)", tx_hash, len(tx.Serialize()), config.CRYPTONOTE_MAX_TX_SIZE)
return false
}
}
// expand the signature first
// whether the inputs are mature and can be used at time is verified while expanding the inputs
//rlog.Debugf("txverify tx %s hf_version %d", tx_hash, hf_version )
if !chain.Expand_Transaction_v2(dbtx, hf_version, tx) {
rlog.Warnf("TX %s inputs could not be expanded or inputs are NOT mature", tx_hash)
return false
}
//logger.Infof("Expanded tx %+v", tx.RctSignature)
// create a temporary hash out of expanded transaction
// this feature is very critical and helps the daemon by spreading out the compute load
// over the entire time between 2 blocks
// this tremendously helps in block propagation times
// and make them easy to process just like like small 50 KB blocks
// each ring member if 64 bytes
tmp_buffer := make([]byte, 0, len(tx.Vin)*32+len(tx.Vin)*len(tx.Vin[0].(transaction.Txin_to_key).Key_offsets)*64)
// build the buffer for special hash
// DO NOT skip anything, use full serialized tx, it is used while building keccak hash
// use everything from tx expansion etc
for i := 0; i < len(tx.Vin); i++ { // append all mlsag sigs
tmp_buffer = append(tmp_buffer, tx.RctSignature.MlsagSigs[i].II[0][:]...)
}
for i := 0; i < len(tx.RctSignature.MixRing); i++ {
for j := 0; j < len(tx.RctSignature.MixRing[i]); j++ {
tmp_buffer = append(tmp_buffer, tx.RctSignature.MixRing[i][j].Destination[:]...)
tmp_buffer = append(tmp_buffer, tx.RctSignature.MixRing[i][j].Mask[:]...)
}
}
// 1 less allocation this way
special_hash := crypto.Keccak256(tx_serialized, tmp_buffer)
if _, ok := transaction_valid_cache.Load(special_hash); ok {
//logger.Infof("Found in cache %s ",tx_hash)
return true
} else {
//logger.Infof("TX not found in cache %s len %d ",tx_hash, len(tmp_buffer))
}
// check the ring signature
if !tx.RctSignature.Verify() {
//logger.Infof("tx expanded %+v\n", tx.RctSignature.MixRing)
logger.WithFields(log.Fields{"txid": tx_hash}).Warnf("TX RCT Signature failed")
return false
}
// signature got verified, cache it
transaction_valid_cache.Store(special_hash, time.Now())
//logger.Infof("TX validity marked in cache %s ",tx_hash)
//logger.WithFields(log.Fields{"txid": tx_hash}).Debugf("TX successfully verified")
*/
}