2021-12-04 16:42:11 +00:00

442 lines
10 KiB
Go
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// Package stringset implements a lightweight (finite) set of string values
// based on Go's built-in map. A Set provides some convenience methods for
// common set operations.
//
// A nil Set is ready for use as an empty set. The basic set methods (Diff,
// Intersect, Union, IsSubset, Map, Choose, Partition) do not mutate their
// arguments. There are also mutating operations (Add, Discard, Pop, Remove,
// Update) that modify their receiver in-place.
//
// A Set can also be traversed and modified using the normal map operations.
// Being a map, a Set is not safe for concurrent access by multiple goroutines
// unless all the concurrent accesses are reads.
package stringset
import (
"reflect"
"sort"
"strconv"
"strings"
)
func toString(x string) string {
return strconv.Quote(x)
}
// A Set represents a set of string values. A nil Set is a valid
// representation of an empty set.
type Set map[string]struct{}
// byElement satisfies sort.Interface to order values of type string.
type byElement []string
func (e byElement) Len() int { return len(e) }
func (e byElement) Swap(i, j int) { e[i], e[j] = e[j], e[i] }
func (e byElement) Less(i, j int) bool {
return e[i] < e[j]
}
// String implements the fmt.Stringer interface. It renders s in standard set
// notation, e.g., ø for an empty set, {a, b, c} for a nonempty one.
func (s Set) String() string {
if s.Empty() {
return "ø"
}
elts := make([]string, len(s))
for i, elt := range s.Elements() {
elts[i] = toString(elt)
}
return "{" + strings.Join(elts, ", ") + "}"
}
// New returns a new set containing exactly the specified elements.
// Returns a non-nil empty Set if no elements are specified.
func New(elts ...string) Set {
set := make(Set, len(elts))
for _, elt := range elts {
set[elt] = struct{}{}
}
return set
}
// NewSize returns a new empty set pre-sized to hold at least n elements.
// This is equivalent to make(Set, n) and will panic if n < 0.
func NewSize(n int) Set { return make(Set, n) }
// Len returns the number of elements in s.
func (s Set) Len() int { return len(s) }
// Elements returns an ordered slice of the elements in s.
func (s Set) Elements() []string {
elts := s.Unordered()
sort.Sort(byElement(elts))
return elts
}
// Unordered returns an unordered slice of the elements in s.
func (s Set) Unordered() []string {
if len(s) == 0 {
return nil
}
elts := make([]string, 0, len(s))
for elt := range s {
elts = append(elts, elt)
}
return elts
}
// Clone returns a new Set distinct from s, containing the same elements.
func (s Set) Clone() Set {
var c Set
c.Update(s)
return c
}
// ContainsAny reports whether s contains one or more of the given elements.
// It is equivalent in meaning to
// s.Intersects(stringset.New(elts...))
// but does not construct an intermediate set.
func (s Set) ContainsAny(elts ...string) bool {
for _, key := range elts {
if _, ok := s[key]; ok {
return true
}
}
return false
}
// Contains reports whether s contains (all) the given elements.
// It is equivalent in meaning to
// New(elts...).IsSubset(s)
// but does not construct an intermediate set.
func (s Set) Contains(elts ...string) bool {
for _, elt := range elts {
if _, ok := s[elt]; !ok {
return false
}
}
return true
}
// IsSubset reports whether s is a subset of s2, s ⊆ s2.
func (s Set) IsSubset(s2 Set) bool {
if s.Empty() {
return true
} else if len(s) > len(s2) {
return false
}
for k := range s {
if _, ok := s2[k]; !ok {
return false
}
}
return true
}
// Equals reports whether s is equal to s2, having exactly the same elements.
func (s Set) Equals(s2 Set) bool { return len(s) == len(s2) && s.IsSubset(s2) }
// Empty reports whether s is empty.
func (s Set) Empty() bool { return len(s) == 0 }
// Intersects reports whether the intersection s ∩ s2 is non-empty, without
// explicitly constructing the intersection.
func (s Set) Intersects(s2 Set) bool {
a, b := s, s2
if len(b) < len(a) {
a, b = b, a // Iterate over the smaller set
}
for k := range a {
if _, ok := b[k]; ok {
return true
}
}
return false
}
// Union constructs the union s s2.
func (s Set) Union(s2 Set) Set {
if s.Empty() {
return s2
} else if s2.Empty() {
return s
}
set := make(Set)
for k := range s {
set[k] = struct{}{}
}
for k := range s2 {
set[k] = struct{}{}
}
return set
}
// Intersect constructs the intersection s ∩ s2.
func (s Set) Intersect(s2 Set) Set {
if s.Empty() || s2.Empty() {
return nil
}
set := make(Set)
for k := range s {
if _, ok := s2[k]; ok {
set[k] = struct{}{}
}
}
if len(set) == 0 {
return nil
}
return set
}
// Diff constructs the set difference s \ s2.
func (s Set) Diff(s2 Set) Set {
if s.Empty() || s2.Empty() {
return s
}
set := make(Set)
for k := range s {
if _, ok := s2[k]; !ok {
set[k] = struct{}{}
}
}
if len(set) == 0 {
return nil
}
return set
}
// SymDiff constructs the symmetric difference s ∆ s2.
// It is equivalent in meaning to (s s2) \ (s ∩ s2).
func (s Set) SymDiff(s2 Set) Set {
return s.Union(s2).Diff(s.Intersect(s2))
}
// Update adds the elements of s2 to *s in-place, and reports whether anything
// was added.
// If *s == nil and s2 ≠ ø, a new set is allocated that is a copy of s2.
func (s *Set) Update(s2 Set) bool {
in := len(*s)
if *s == nil && len(s2) > 0 {
*s = make(Set)
}
for k := range s2 {
(*s)[k] = struct{}{}
}
return len(*s) != in
}
// Add adds the specified elements to *s in-place and reports whether anything
// was added. If *s == nil, a new set equivalent to New(ss...) is stored in *s.
func (s *Set) Add(ss ...string) bool {
in := len(*s)
if *s == nil {
*s = make(Set)
}
for _, key := range ss {
(*s)[key] = struct{}{}
}
return len(*s) != in
}
// Remove removes the elements of s2 from s in-place and reports whether
// anything was removed.
//
// Equivalent to s = s.Diff(s2), but does not allocate a new set.
func (s Set) Remove(s2 Set) bool {
in := s.Len()
if !s.Empty() {
for k := range s2 {
delete(s, k)
}
}
return s.Len() != in
}
// Discard removes the elements of elts from s in-place and reports whether
// anything was removed.
//
// Equivalent to s.Remove(New(elts...)), but does not allocate an intermediate
// set for ss.
func (s Set) Discard(elts ...string) bool {
in := s.Len()
if !s.Empty() {
for _, elt := range elts {
delete(s, elt)
}
}
return s.Len() != in
}
// Index returns the first offset of needle in elts, if it occurs; otherwise -1.
func Index(needle string, elts []string) int {
for i, elt := range elts {
if elt == needle {
return i
}
}
return -1
}
// Contains reports whether v contains s, for v having type Set, []string,
// map[string]T, or Keyer. It returns false if v's type does not have one of
// these forms.
func Contains(v interface{}, s string) bool {
switch t := v.(type) {
case []string:
return Index(s, t) >= 0
case Set:
return t.Contains(s)
case Keyer:
return Index(s, t.Keys()) >= 0
}
if m := reflect.ValueOf(v); m.IsValid() && m.Kind() == reflect.Map && m.Type().Key() == refType {
return m.MapIndex(reflect.ValueOf(s)).IsValid()
}
return false
}
// A Keyer implements a Keys method that returns the keys of a collection such
// as a map or a Set.
type Keyer interface {
// Keys returns the keys of the receiver, which may be nil.
Keys() []string
}
var refType = reflect.TypeOf((*string)(nil)).Elem()
// FromKeys returns a Set of strings from v, which must either be a string,
// a []string, a map[string]T, or a Keyer. It returns nil if v's type does
// not have one of these forms.
func FromKeys(v interface{}) Set {
var result Set
switch t := v.(type) {
case string:
return New(t)
case []string:
for _, key := range t {
result.Add(key)
}
return result
case map[string]struct{}: // includes Set
for key := range t {
result.Add(key)
}
return result
case Keyer:
return New(t.Keys()...)
case nil:
return nil
}
m := reflect.ValueOf(v)
if m.Kind() != reflect.Map || m.Type().Key() != refType {
return nil
}
for _, key := range m.MapKeys() {
result.Add(key.Interface().(string))
}
return result
}
// FromIndexed returns a Set constructed from the values of f(i) for
// each 0 ≤ i < n. If n ≤ 0 the result is nil.
func FromIndexed(n int, f func(int) string) Set {
var set Set
for i := 0; i < n; i++ {
set.Add(f(i))
}
return set
}
// FromValues returns a Set of the values from v, which has type map[T]string.
// Returns the empty set if v does not have a type of this form.
func FromValues(v interface{}) Set {
if t := reflect.TypeOf(v); t == nil || t.Kind() != reflect.Map || t.Elem() != refType {
return nil
}
var set Set
m := reflect.ValueOf(v)
for _, key := range m.MapKeys() {
set.Add(m.MapIndex(key).Interface().(string))
}
return set
}
// Map returns the Set that results from applying f to each element of s.
func (s Set) Map(f func(string) string) Set {
var out Set
for k := range s {
out.Add(f(k))
}
return out
}
// Each applies f to each element of s.
func (s Set) Each(f func(string)) {
for k := range s {
f(k)
}
}
// Select returns the subset of s for which f returns true.
func (s Set) Select(f func(string) bool) Set {
var out Set
for k := range s {
if f(k) {
out.Add(k)
}
}
return out
}
// Partition returns two disjoint sets, yes containing the subset of s for
// which f returns true and no containing the subset for which f returns false.
func (s Set) Partition(f func(string) bool) (yes, no Set) {
for k := range s {
if f(k) {
yes.Add(k)
} else {
no.Add(k)
}
}
return
}
// Choose returns an element of s for which f returns true, if one exists. The
// second result reports whether such an element was found.
// If f == nil, chooses an arbitrary element of s. The element chosen is not
// guaranteed to be the same across repeated calls.
func (s Set) Choose(f func(string) bool) (string, bool) {
if f == nil {
for k := range s {
return k, true
}
}
for k := range s {
if f(k) {
return k, true
}
}
return "", false
}
// Pop removes and returns an element of s for which f returns true, if one
// exists (essentially Choose + Discard). The second result reports whether
// such an element was found. If f == nil, pops an arbitrary element of s.
func (s Set) Pop(f func(string) bool) (string, bool) {
if v, ok := s.Choose(f); ok {
delete(s, v)
return v, true
}
return "", false
}
// Count returns the number of elements of s for which f returns true.
func (s Set) Count(f func(string) bool) (n int) {
for k := range s {
if f(k) {
n++
}
}
return
}