derohe-miniblock-mod/dvm/dvm_store.go
2021-02-22 17:48:14 +00:00

325 lines
9.4 KiB
Go

// Copyright 2017-2018 DERO Project. All rights reserved.
// Use of this source code in any form is governed by RESEARCH license.
// license can be found in the LICENSE file.
// GPG: 0F39 E425 8C65 3947 702A 8234 08B2 0360 A03A 9DE8
//
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
// THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
// THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
package dvm
import "fmt"
import "encoding/binary"
import "github.com/deroproject/derohe/cryptography/crypto"
const DVAL = "DERO_BALANCE" // DERO Values are stored in this variable
const CHANGELOG = "CHANGELOG"
// this package exports an interface which is used by blockchain to persist/query data
type DataKey struct {
SCID crypto.Hash // tx which created the the contract or contract ID
Key Variable
}
type DataAtom struct {
Key DataKey
Prev_Value Variable // previous Value if any
Value Variable // current value if any
}
type TransferInternal struct {
Received []uint64
Sent []uint64
}
// any external tranfers
type TransferExternal struct {
Address string `cbor:"A,omitempty" json:"A,omitempty"` // transfer to this blob
Amount uint64 `cbor:"V,omitempty" json:"V,omitempty"` // Amount in Atomic units
}
type SC_Transfers struct {
BalanceAtStart uint64 // value at start
TransferI TransferInternal // all internal transfers, SC to other SC
TransferE []TransferExternal // all external transfers, SC to external wallets
}
// all SC load and store operations will go though this
type TX_Storage struct {
DiskLoader func(DataKey, *uint64) Variable
DiskLoaderRaw func([]byte) ([]byte, bool)
SCID crypto.Hash
BalanceAtStart uint64 // at runtime this will be fed balance
Keys map[DataKey]Variable // this keeps the in-transit DB updates, just in case we have to discard instantly
RawKeys map[string][]byte
Transfers map[crypto.Hash]SC_Transfers // all transfers ( internal/external )
}
var DVM_STORAGE_BACKEND DVM_Storage_Loader // this variable can be hijacked at runtime to offer different stores such as RAM/file/DB etc
type DVM_Storage_Loader interface {
Load(DataKey, *uint64) Variable
Store(DataKey, Variable)
RawLoad([]byte) ([]byte, bool)
RawStore([]byte, []byte)
}
// initialize tx store
func Initialize_TX_store() (tx_store *TX_Storage) {
tx_store = &TX_Storage{Keys: map[DataKey]Variable{}, RawKeys: map[string][]byte{}, Transfers: map[crypto.Hash]SC_Transfers{}}
return
}
func (tx_store *TX_Storage) RawLoad(key []byte) (value []byte, found bool) {
value, found = tx_store.RawKeys[string(key)]
if !found {
if tx_store.DiskLoaderRaw == nil {
return
}
value, found = tx_store.DiskLoaderRaw(key)
}
return
}
func (tx_store *TX_Storage) RawStore(key []byte, value []byte) {
tx_store.RawKeys[string(key)] = value
return
}
// this will load the variable, and if the key is found
func (tx_store *TX_Storage) Load(dkey DataKey, found_value *uint64) (value Variable) {
//fmt.Printf("Loading %+v \n", dkey)
*found_value = 0
if result, ok := tx_store.Keys[dkey]; ok { // if it was modified in current TX, use it
*found_value = 1
return result
}
if tx_store.DiskLoader == nil {
panic("DVM_STORAGE_BACKEND is not ready")
}
value = tx_store.DiskLoader(dkey, found_value)
return
}
// store variable
func (tx_store *TX_Storage) Store(dkey DataKey, v Variable) {
//fmt.Printf("Storing request %+v : %+v\n", dkey, v)
tx_store.Keys[dkey] = v
}
// store variable
func (tx_store *TX_Storage) SendExternal(sender_scid crypto.Hash, addr_str string, amount uint64) {
//fmt.Printf("Transfer to external address : %+v\n", addr_str)
tx_store.Balance(sender_scid) // load from disk if required
transfer := tx_store.Transfers[sender_scid]
transfer.TransferE = append(transfer.TransferE, TransferExternal{Address: addr_str, Amount: amount})
tx_store.Transfers[sender_scid] = transfer
tx_store.Balance(sender_scid) // recalculate balance panic if any issues
}
// if TXID is not already loaded, load it
func (tx_store *TX_Storage) ReceiveInternal(scid crypto.Hash, amount uint64) {
tx_store.Balance(scid) // load from disk if required
transfer := tx_store.Transfers[scid]
transfer.TransferI.Received = append(transfer.TransferI.Received, amount)
tx_store.Transfers[scid] = transfer
tx_store.Balance(scid) // recalculate balance panic if any issues
}
func (tx_store *TX_Storage) SendInternal(sender_scid crypto.Hash, receiver_scid crypto.Hash, amount uint64) {
//sender side
{
tx_store.Balance(sender_scid) // load from disk if required
transfer := tx_store.Transfers[sender_scid]
transfer.TransferI.Sent = append(transfer.TransferI.Sent, amount)
tx_store.Transfers[sender_scid] = transfer
tx_store.Balance(sender_scid) // recalculate balance panic if any issues
}
{
tx_store.Balance(receiver_scid) // load from disk if required
transfer := tx_store.Transfers[receiver_scid]
transfer.TransferI.Received = append(transfer.TransferI.Received, amount)
tx_store.Transfers[receiver_scid] = transfer
tx_store.Balance(receiver_scid) // recalculate balance panic if any issues
}
}
func GetBalanceKey(scid crypto.Hash) (x DataKey) {
x.SCID = scid
x.Key = Variable{Type: String, Value: DVAL}
return x
}
/*
func GetNormalKey(scid crypto.Key, v Variable) (x DataKey) {
x.SCID = scid
x.Key = Variable {Type:v.Type, Value: v.Value}
return x
}
*/
// this will give the balance, will load the balance from disk
func (tx_store *TX_Storage) Balance(scid crypto.Hash) uint64 {
if scid != tx_store.SCID {
fmt.Printf("scid %s SCID %s\n", scid, tx_store.SCID)
fmt.Printf("tx_store internal %+v\n", tx_store)
panic("cross SC balance calls are not supported")
}
if _, ok := tx_store.Transfers[scid]; !ok {
var transfer SC_Transfers
/*
found_value := uint64(0)
value := tx_store.Load(GetBalanceKey(scid), &found_value)
if found_value == 0 {
panic(fmt.Sprintf("SCID %s is not loaded", scid)) // we must load it from disk
}
if value.Type != Uint64 {
panic(fmt.Sprintf("SCID %s balance is not uint64, HOW ??", scid)) // we must load it from disk
}
*/
transfer.BalanceAtStart = tx_store.BalanceAtStart
tx_store.Transfers[scid] = transfer
}
transfers := tx_store.Transfers[scid]
balance := transfers.BalanceAtStart
// replay all receives/sends
// handle all internal receives
for _, amt_received := range transfers.TransferI.Received {
c := balance + amt_received
if c >= balance {
balance = c
} else {
panic("uint64 overflow wraparound attack")
}
}
// handle all internal sends
for _, amt_sent := range transfers.TransferI.Sent {
if amt_sent >= balance {
panic("uint64 underflow wraparound attack")
}
balance = balance - amt_sent
}
// handle all external sends
for _, trans := range transfers.TransferE {
if trans.Amount >= balance {
panic("uint64 underflow wraparound attack")
}
balance = balance - trans.Amount
}
return balance
}
// whether the scid has enough balance
func (tx_store *TX_Storage) HasBalance(scid crypto.Key, amount uint64) {
}
// why should we not hash the return value to return a hash value
// using entire key could be useful, if DB can somehow link between them in the form of buckets and all
func (dkey DataKey) MarshalBinary() (ser []byte, err error) {
ser, err = dkey.Key.MarshalBinary()
return
}
func (dkey DataKey) MarshalBinaryPanic() (ser []byte) {
var err error
if ser, err = dkey.Key.MarshalBinary(); err != nil {
panic(err)
}
return
}
// these are used by lowest layers
func (v Variable) MarshalBinary() (data []byte, err error) {
data = append(data, byte(v.Type)) // add object type
switch v.Type {
case Invalid:
return
case Uint64:
var buf [binary.MaxVarintLen64]byte
done := binary.PutUvarint(buf[:], v.Value.(uint64)) // uint64 data type
data = append(data, buf[:done]...)
case Blob:
panic("not implemented")
case String:
data = append(data, ([]byte(v.Value.(string)))...) // string
default:
panic("unknown variable type not implemented")
}
return
}
func (v Variable) MarshalBinaryPanic() (ser []byte) {
var err error
if ser, err = v.MarshalBinary(); err != nil {
panic(err)
}
return
}
func (v *Variable) UnmarshalBinary(buf []byte) (err error) {
if len(buf) < 1 || Vtype(buf[0]) == Invalid {
return fmt.Errorf("invalid, probably corruption")
}
switch Vtype(buf[0]) {
case Invalid:
return fmt.Errorf("Invalid cannot be deserialized")
case Uint64:
v.Type = Uint64
var n int
v.Value, n = binary.Uvarint(buf[1:]) // uint64 data type
if n <= 0 {
panic("corruption in DB")
return fmt.Errorf("corruption in DB")
}
case String:
v.Type = String
v.Value = string(buf[1:])
return nil
case Blob:
panic("blob not implemented") // an encrypted blob, used to add data to blockchain without knowing address
default:
panic("unknown variable type not implemented")
}
return
}