derohe-miniblock-mod/blockchain/transaction_execute.go
2022-01-06 04:11:51 +00:00

576 lines
20 KiB
Go

// Copyright 2017-2021 DERO Project. All rights reserved.
// Use of this source code in any form is governed by RESEARCH license.
// license can be found in the LICENSE file.
// GPG: 0F39 E425 8C65 3947 702A 8234 08B2 0360 A03A 9DE8
//
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
// THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
// THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
package blockchain
// this file implements core execution of all changes to block chain homomorphically
import "fmt"
import "bufio"
import "strings"
import "strconv"
import "runtime/debug"
import "encoding/hex"
import "encoding/binary"
import "math/big"
import "golang.org/x/xerrors"
import "github.com/deroproject/derohe/cryptography/crypto"
import "github.com/deroproject/derohe/cryptography/bn256"
import "github.com/deroproject/derohe/transaction"
import "github.com/deroproject/derohe/config"
import "github.com/deroproject/derohe/premine"
import "github.com/deroproject/derohe/globals"
import "github.com/deroproject/derohe/block"
import "github.com/deroproject/derohe/rpc"
import "github.com/deroproject/derohe/dvm"
import "github.com/deroproject/graviton"
// convert bitcoin model to our, but skip initial 4 years of supply, so our total supply gets to 10.5 million
const RewardReductionInterval = 210000 * 600 / config.BLOCK_TIME // 210000 comes from bitcoin
const BaseReward = (50 * 100000 * config.BLOCK_TIME) / 600 // convert bitcoin reward system to our block
// CalcBlockSubsidy returns the subsidy amount a block at the provided height
// should have. This is mainly used for determining how much the coinbase for
// newly generated blocks awards as well as validating the coinbase for blocks
// has the expected value.
//
// The subsidy is halved every SubsidyReductionInterval blocks. Mathematically
// this is: baseSubsidy / 2^(height/SubsidyReductionInterval)
//
// At the target block generation rate for the main network, this is
// approximately every 4 years.
//
// basically out of of the bitcoin supply, we have wiped of initial interval ( this wipes of 10.5 million, so total remaining is around 10.5 million
func CalcBlockReward(height uint64) uint64 {
return BaseReward >> ((height + RewardReductionInterval) / RewardReductionInterval)
}
// process the miner tx, giving fees, miner rewatd etc
func (chain *Blockchain) process_miner_transaction(bl *block.Block, genesis bool, balance_tree *graviton.Tree, fees uint64, height uint64) {
tx := bl.Miner_TX
var acckey crypto.Point
if err := acckey.DecodeCompressed(tx.MinerAddress[:]); err != nil {
panic(err)
}
if genesis == true { // process premine ,register genesis block, dev key
balance := crypto.ConstructElGamal(acckey.G1(), crypto.ElGamal_BASE_G) // init zero balance
balance = balance.Plus(new(big.Int).SetUint64(tx.Value << 1)) // add premine to users balance homomorphically
nb := crypto.NonceBalance{NonceHeight: 0, Balance: balance}
balance_tree.Put(tx.MinerAddress[:], nb.Serialize()) // reserialize and store
// we must process premine list and register and give them balance,
premine_count := 0
scanner := bufio.NewScanner(strings.NewReader(premine.List))
for scanner.Scan() {
data := strings.Split(scanner.Text(), ",")
if len(data) < 2 {
panic("invalid premine list")
}
var raw_tx [4096]byte
var rtx transaction.Transaction
if ramount, err := strconv.ParseUint(data[0], 10, 64); err != nil {
panic(err)
} else if n, err := hex.Decode(raw_tx[:], []byte(data[1])); err != nil {
panic(err)
} else if err := rtx.Deserialize(raw_tx[:n]); err != nil {
panic(err)
} else if !rtx.IsRegistration() {
panic("tx is not registration")
} else if !rtx.IsRegistrationValid() {
panic("tx registration signature is invalid")
} else {
var racckey crypto.Point
if err := racckey.DecodeCompressed(rtx.MinerAddress[:]); err != nil {
panic(err)
}
balance := crypto.ConstructElGamal(racckey.G1(), crypto.ElGamal_BASE_G) // init zero balance
balance = balance.Plus(new(big.Int).SetUint64(ramount)) // add premine to users balance homomorphically
nb := crypto.NonceBalance{NonceHeight: 0, Balance: balance}
balance_tree.Put(rtx.MinerAddress[:], nb.Serialize()) // reserialize and store
premine_count++
}
}
logger.V(1).Info("successfully added premine accounts", "count", premine_count)
return
}
// general coin base transaction
base_reward := CalcBlockReward(uint64(height))
full_reward := base_reward + fees
//full_reward is divided into equal parts for all miner blocks + miner address
// since perfect division is not possible, ( see money handling)
// any left over change is delivered to main miner who integrated the full block
share := full_reward / uint64(len(bl.MiniBlocks)) // one block integrator, this is integer division
leftover := full_reward - (share * uint64(len(bl.MiniBlocks))) // only integrator will get this
{ // giver integrator his reward
balance_serialized, err := balance_tree.Get(tx.MinerAddress[:])
if err != nil {
panic(err)
}
nb := new(crypto.NonceBalance).Deserialize(balance_serialized)
nb.Balance = nb.Balance.Plus(new(big.Int).SetUint64(share + leftover)) // add miners reward to miners balance homomorphically
balance_tree.Put(tx.MinerAddress[:], nb.Serialize()) // reserialize and store
}
// all the other miniblocks will get their share
for _, mbl := range bl.MiniBlocks {
if mbl.Final {
continue
}
_, key_compressed, balance_serialized, err := balance_tree.GetKeyValueFromHash(mbl.KeyHash[:16])
if err != nil {
panic(err)
}
nb := new(crypto.NonceBalance).Deserialize(balance_serialized)
nb.Balance = nb.Balance.Plus(new(big.Int).SetUint64(share)) // add miners reward to miners balance homomorphically
balance_tree.Put(key_compressed[:], nb.Serialize()) // reserialize and store
}
return
}
// process the tx, giving fees, miner rewatd etc
// this should be atomic, either all should be done or none at all
func (chain *Blockchain) process_transaction(changed map[crypto.Hash]*graviton.Tree, tx transaction.Transaction, balance_tree *graviton.Tree, height uint64) uint64 {
logger.V(2).Info("Processing/Executing transaction", "txid", tx.GetHash(), "type", tx.TransactionType.String())
switch tx.TransactionType {
case transaction.REGISTRATION: // miner address represents registration
if _, err := balance_tree.Get(tx.MinerAddress[:]); err != nil {
if !xerrors.Is(err, graviton.ErrNotFound) { // any other err except not found panic
panic(err)
}
} // address needs registration
var acckey crypto.Point
if err := acckey.DecodeCompressed(tx.MinerAddress[:]); err != nil {
panic(err)
}
zerobalance := crypto.ConstructElGamal(acckey.G1(), crypto.ElGamal_BASE_G)
if !globals.IsMainnet() { // give testnet users a dummy amount to play
zerobalance = zerobalance.Plus(new(big.Int).SetUint64(800000)) // add fix amount to every wallet to users balance for more testing
}
nb := crypto.NonceBalance{NonceHeight: 0, Balance: zerobalance}
balance_tree.Put(tx.MinerAddress[:], nb.Serialize())
return 0 // registration doesn't give any fees . why & how ?
case transaction.BURN_TX, transaction.NORMAL, transaction.SC_TX: // burned amount is not added anywhere and thus lost forever
for t := range tx.Payloads {
var tree *graviton.Tree
if tx.Payloads[t].SCID.IsZero() {
tree = balance_tree
} else {
tree = changed[tx.Payloads[t].SCID]
}
parity := tx.Payloads[t].Proof.Parity()
for i := 0; i < int(tx.Payloads[t].Statement.RingSize); i++ {
key_pointer := tx.Payloads[t].Statement.Publickeylist_pointers[i*int(tx.Payloads[t].Statement.Bytes_per_publickey) : (i+1)*int(tx.Payloads[t].Statement.Bytes_per_publickey)]
_, key_compressed, balance_serialized, err := tree.GetKeyValueFromHash(key_pointer)
if err != nil && !tx.Payloads[t].SCID.IsZero() {
if xerrors.Is(err, graviton.ErrNotFound) { // if the address is not found, lookup in main tree
_, key_compressed, _, err = balance_tree.GetKeyValueFromHash(key_pointer)
if err == nil {
var p bn256.G1
if err = p.DecodeCompressed(key_compressed[:]); err != nil {
panic(fmt.Errorf("key %d could not be decompressed", i))
}
balance := crypto.ConstructElGamal(&p, crypto.ElGamal_BASE_G) // init zero balance
nb := crypto.NonceBalance{NonceHeight: 0, Balance: balance}
balance_serialized = nb.Serialize()
}
}
}
if err != nil {
panic(fmt.Errorf("balance not obtained err %s\n", err))
}
nb := new(crypto.NonceBalance).Deserialize(balance_serialized)
echanges := crypto.ConstructElGamal(tx.Payloads[t].Statement.C[i], tx.Payloads[t].Statement.D)
nb.Balance = nb.Balance.Add(echanges) // homomorphic addition of changes
if (i%2 == 0) == parity { // this condition is well thought out and works good enough
nb.NonceHeight = height
}
tree.Put(key_compressed, nb.Serialize()) // reserialize and store
}
}
return tx.Fees()
default:
panic("unknown transaction, do not know how to process it")
return 0
}
}
type Tree_Wrapper struct {
tree *graviton.Tree
entries map[string][]byte
transfere []dvm.TransferExternal
}
func (t *Tree_Wrapper) Get(key []byte) ([]byte, error) {
if value, ok := t.entries[string(key)]; ok {
return value, nil
} else {
return t.tree.Get(key)
}
}
func (t *Tree_Wrapper) Put(key []byte, value []byte) error {
t.entries[string(key)] = append([]byte{}, value...)
return nil
}
// checks cache and returns a wrapped tree if possible
func wrapped_tree(cache map[crypto.Hash]*graviton.Tree, ss *graviton.Snapshot, id crypto.Hash) *Tree_Wrapper {
if cached_tree, ok := cache[id]; ok { // tree is in cache return it
return &Tree_Wrapper{tree: cached_tree, entries: map[string][]byte{}}
}
if tree, err := ss.GetTree(string(id[:])); err != nil {
panic(err)
} else {
return &Tree_Wrapper{tree: tree, entries: map[string][]byte{}}
}
}
// does additional processing for SC
// all processing occurs in wrapped trees, if any error occurs we dicard all trees
func (chain *Blockchain) process_transaction_sc(cache map[crypto.Hash]*graviton.Tree, ss *graviton.Snapshot, bl_height, bl_topoheight, bl_timestamp uint64, blid crypto.Hash, tx transaction.Transaction, balance_tree *graviton.Tree, sc_tree *graviton.Tree) (gas uint64, err error) {
if len(tx.SCDATA) == 0 {
return tx.Fees(), nil
}
gas = tx.Fees()
w_balance_tree := &Tree_Wrapper{tree: balance_tree, entries: map[string][]byte{}}
w_sc_tree := &Tree_Wrapper{tree: sc_tree, entries: map[string][]byte{}}
_ = w_balance_tree
var w_sc_data_tree *Tree_Wrapper
txhash := tx.GetHash()
scid := txhash
defer func() {
if r := recover(); r != nil {
logger.V(1).Error(nil, "Recover while executing SC ", "txid", txhash, "error", r, "stack", fmt.Sprintf("%s", string(debug.Stack())))
}
}()
if !tx.SCDATA.Has(rpc.SCACTION, rpc.DataUint64) { // tx doesn't have sc action
//err = fmt.Errorf("no scid provided")
return tx.Fees(), nil
}
action_code := rpc.SC_ACTION(tx.SCDATA.Value(rpc.SCACTION, rpc.DataUint64).(uint64))
switch action_code {
case rpc.SC_INSTALL: // request to install an SC
if !tx.SCDATA.Has(rpc.SCCODE, rpc.DataString) { // but only it is present
break
}
sc_code := tx.SCDATA.Value(rpc.SCCODE, rpc.DataString).(string)
if sc_code == "" { // no code provided nothing to do
err = fmt.Errorf("no code provided")
break
}
// check whether sc can be parsed
//var sc_parsed dvm.SmartContract
pos := ""
var sc dvm.SmartContract
if sc, pos, err = dvm.ParseSmartContract(sc_code); err != nil {
logger.V(2).Error(err, "error Parsing sc", "txid", txhash, "pos", pos)
break
}
meta := SC_META_DATA{}
if _, ok := sc.Functions["InitializePrivate"]; ok {
meta.Type = 1
}
w_sc_data_tree = wrapped_tree(cache, ss, scid)
// install SC, should we check for sanity now, why or why not
w_sc_data_tree.Put(SC_Code_Key(scid), dvm.Variable{Type: dvm.String, ValueString: sc_code}.MarshalBinaryPanic())
w_sc_tree.Put(SC_Meta_Key(scid), meta.MarshalBinary())
if meta.Type == 1 { // if its a a private SC
gas, err = chain.execute_sc_function(w_sc_tree, w_sc_data_tree, scid, bl_height, bl_topoheight, bl_timestamp, blid, tx, "InitializePrivate", 1)
} else {
gas, err = chain.execute_sc_function(w_sc_tree, w_sc_data_tree, scid, bl_height, bl_topoheight, bl_timestamp, blid, tx, "Initialize", 1)
}
if err != nil {
return
}
//fmt.Printf("Error status after initializing SC %s\n",err)
case rpc.SC_CALL: // trigger a CALL
if !tx.SCDATA.Has(rpc.SCID, rpc.DataHash) { // but only if it is present
err = fmt.Errorf("no scid provided")
break
}
if !tx.SCDATA.Has("entrypoint", rpc.DataString) { // but only if it is present
err = fmt.Errorf("no entrypoint provided")
break
}
scid = tx.SCDATA.Value(rpc.SCID, rpc.DataHash).(crypto.Hash)
if _, err = w_sc_tree.Get(SC_Meta_Key(scid)); err != nil {
err = fmt.Errorf("scid %s not installed", scid)
return
}
w_sc_data_tree = wrapped_tree(cache, ss, scid)
entrypoint := tx.SCDATA.Value("entrypoint", rpc.DataString).(string)
//fmt.Printf("We must call the SC %s function\n", entrypoint)
gas, err = chain.execute_sc_function(w_sc_tree, w_sc_data_tree, scid, bl_height, bl_topoheight, bl_timestamp, blid, tx, entrypoint, 1)
default: // unknown what to do
err = fmt.Errorf("unknown action what to do scid %x", scid)
return
}
// we must commit all the changes
// check whether we are not overflowing/underflowing, means SC is not over sending
if err == nil {
total_per_asset := map[crypto.Hash]uint64{}
for _, transfer := range w_sc_data_tree.transfere { // do external tranfer
if transfer.Amount == 0 {
continue
}
// an SCID can generate it's token infinitely
if transfer.Asset != scid && total_per_asset[transfer.Asset]+transfer.Amount <= total_per_asset[transfer.Asset] {
err = fmt.Errorf("Balance calculation overflow")
break
} else {
total_per_asset[transfer.Asset] = total_per_asset[transfer.Asset] + transfer.Amount
}
}
if err == nil {
for asset, value := range total_per_asset {
stored_value, _ := chain.LoadSCAssetValue(w_sc_data_tree, scid, asset)
// an SCID can generate it's token infinitely
if asset != scid && stored_value-value > stored_value {
err = fmt.Errorf("Balance calculation underflow stored_value %d transferring %d\n", stored_value, value)
break
}
var new_value [8]byte
binary.BigEndian.PutUint64(new_value[:], stored_value-value)
chain.StoreSCValue(w_sc_data_tree, scid, asset[:], new_value[:])
}
}
//also check whether all destinations are registered
if err == nil {
for _, transfer := range w_sc_data_tree.transfere {
if _, err = balance_tree.Get([]byte(transfer.Address)); err == nil || xerrors.Is(err, graviton.ErrNotFound) {
// everything is okay
} else {
err = fmt.Errorf("account is unregistered")
logger.V(1).Error(err, "account is unregistered", "txhash", txhash, "scid", scid, "address", transfer.Address)
break
}
}
}
}
if err != nil { // error occured, give everything to SC, since we may not have information to send them back
if chain.simulator {
logger.Error(err, "error executing sc", "txid", txhash)
}
for _, payload := range tx.Payloads {
var new_value [8]byte
w_sc_data_tree = wrapped_tree(cache, ss, scid) // get a new tree, discarding everything
stored_value, _ := chain.LoadSCAssetValue(w_sc_data_tree, scid, payload.SCID)
binary.BigEndian.PutUint64(new_value[:], stored_value+payload.BurnValue)
chain.StoreSCValue(w_sc_data_tree, scid, payload.SCID[:], new_value[:])
for k, v := range w_sc_data_tree.entries { // commit incoming balances to tree
if err = w_sc_data_tree.tree.Put([]byte(k), v); err != nil {
return
}
}
//for k, v := range w_sc_tree.entries {
// if err = w_sc_tree.tree.Put([]byte(k), v); err != nil {
// return
// }
//}
}
return
}
// anything below should never give error
if _, ok := cache[scid]; !ok {
cache[scid] = w_sc_data_tree.tree
}
for k, v := range w_sc_data_tree.entries { // commit entire data to tree
if _, ok := globals.Arguments["--debug"]; ok && globals.Arguments["--debug"] != nil && chain.simulator {
logger.V(1).Info("Writing", "txid", txhash, "scid", scid, "key", fmt.Sprintf("%x", k), "value", fmt.Sprintf("%x", v))
}
if len(v) == 0 {
if err = w_sc_data_tree.tree.Delete([]byte(k)); err != nil {
return
}
} else {
if err = w_sc_data_tree.tree.Put([]byte(k), v); err != nil {
return
}
}
}
for k, v := range w_sc_tree.entries {
if err = w_sc_tree.tree.Put([]byte(k), v); err != nil {
return
}
}
for i, transfer := range w_sc_data_tree.transfere { // do external tranfer
if transfer.Amount == 0 {
continue
}
//fmt.Printf("%d sending to external %s %x\n", i,transfer.Asset,transfer.Address)
var zeroscid crypto.Hash
var curbtree *graviton.Tree
switch transfer.Asset {
case zeroscid: // main dero balance, handle it
curbtree = balance_tree
case scid: // this scid balance, handle it
curbtree = cache[scid]
default: // any other asset scid
var ok bool
if curbtree, ok = cache[transfer.Asset]; !ok {
if curbtree, err = ss.GetTree(string(transfer.Asset[:])); err != nil {
panic(err)
}
cache[transfer.Asset] = curbtree
}
}
if curbtree == nil {
panic("tree cannot be nil at this point in time")
}
addr_bytes := []byte(transfer.Address)
if _, err = balance_tree.Get(addr_bytes); err != nil { // first check whether address is registered
err = fmt.Errorf("sending to non registered account acc %x err %s", addr_bytes, err) // this can only occur, if account no registered or dis corruption
panic(err)
}
var balance_serialized []byte
balance_serialized, err = curbtree.Get(addr_bytes)
if err != nil && xerrors.Is(err, graviton.ErrNotFound) { // if the address is not found, lookup in main tree
var p bn256.G1
if err = p.DecodeCompressed(addr_bytes[:]); err != nil {
panic(fmt.Errorf("key %x could not be decompressed", addr_bytes))
}
balance := crypto.ConstructElGamal(&p, crypto.ElGamal_BASE_G) // init zero balance
nb := crypto.NonceBalance{NonceHeight: 0, Balance: balance}
balance_serialized = nb.Serialize()
} else if err != nil {
fmt.Printf("%s %d could not transfer %d %+v\n", scid, i, transfer.Amount, addr_bytes)
panic(err) // only disk corruption can reach here
}
nb := new(crypto.NonceBalance).Deserialize(balance_serialized)
nb.Balance = nb.Balance.Plus(new(big.Int).SetUint64(transfer.Amount)) // add transfer to users balance homomorphically
curbtree.Put(addr_bytes, nb.Serialize()) // reserialize and store
}
//c := w_sc_data_tree.tree.Cursor()
//for k, v, err := c.First(); err == nil; k, v, err = c.Next() {
// fmt.Printf("key=%s (%x), value=%s\n", k, k, v)
//}
//fmt.Printf("cursor complete\n")
//h, err := data_tree.Hash()
//fmt.Printf("%s successfully executed sc_call data_tree hash %x %s\n", scid, h, err)
return tx.Fees(), nil
}
// func extract signer from a tx, if possible
// extract signer is only possible if ring size is 2
func extract_signer(tx *transaction.Transaction) (signer [33]byte, err error) {
for t := range tx.Payloads {
if uint64(len(tx.Payloads[t].Statement.Publickeylist_compressed)) != tx.Payloads[t].Statement.RingSize {
panic("tx is not expanded")
return signer, fmt.Errorf("tx is not expanded")
}
if tx.Payloads[t].SCID.IsZero() && tx.Payloads[t].Statement.RingSize == 2 {
parity := tx.Payloads[t].Proof.Parity()
for i := 0; i < int(tx.Payloads[t].Statement.RingSize); i++ {
if (i%2 == 0) == parity { // this condition is well thought out and works good enough
copy(signer[:], tx.Payloads[t].Statement.Publickeylist_compressed[i][:])
return
}
}
}
}
return signer, fmt.Errorf("unknown signer")
}