2021-11-21 15:25:11 +00:00

389 lines
11 KiB
Go

// Copyright 2017-2021 DERO Project. All rights reserved.
// Use of this source code in any form is governed by RESEARCH license.
// license can be found in the LICENSE file.
// GPG: 0F39 E425 8C65 3947 702A 8234 08B2 0360 A03A 9DE8
//
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
// THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
// THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
package mempool
import "fmt"
import "sync"
import "sort"
import "time"
import "sync/atomic"
import "github.com/go-logr/logr"
import "github.com/deroproject/derohe/transaction"
import "github.com/deroproject/derohe/globals"
import "github.com/deroproject/derohe/metrics"
import "github.com/deroproject/derohe/cryptography/crypto"
// this is only used for sorting and nothing else
type TX_Sorting_struct struct {
FeesPerByte uint64 // this is fees per byte
Hash crypto.Hash // transaction hash
Size uint64 // transaction size
}
// NOTE: do NOT consider this code as useless, as it is used to avooid double spending attacks within the block and within the pool
// let me explain, since we are a state machine, we add block to our blockchain
// so, if a double spending attack comes, 2 transactions with same inputs, we reject one of them
// the algo is documented somewhere else which explains the entire process
// at this point in time, this is an ultrafast written mempool,
// it will not scale for more than 10000 transactions but is good enough for now
// we can always come back and rewrite it
// NOTE: the pool is now persistant
type Mempool struct {
txs sync.Map //map[crypto.Hash]*mempool_object
nonces sync.Map //map[crypto.Hash]bool // contains key images of all txs
sorted_by_fee []crypto.Hash // contains txids sorted by fees
sorted []TX_Sorting_struct // contains TX sorting information, so as new block can be forged easily
modified bool // used to monitor whethel mem pool contents have changed,
height uint64 // track blockchain height
// global variable , but don't see it utilisation here except fot tx verification
//chain *Blockchain
Exit_Mutex chan bool
sync.Mutex
}
// this object is serialized and deserialized
type mempool_object struct {
Tx *transaction.Transaction
Added uint64 // time in epoch format
Height uint64 // at which height the tx unlocks in the mempool
Size uint64 // size in bytes of the TX
FEEperBYTE uint64 // fee per byte
}
var loggerpool logr.Logger
func Init_Mempool(params map[string]interface{}) (*Mempool, error) {
var mempool Mempool
//mempool.chain = params["chain"].(*Blockchain)
loggerpool = globals.Logger.WithName("MEMPOOL") // all components must use this logger
loggerpool.Info("Mempool started")
atomic.AddUint32(&globals.Subsystem_Active, 1) // increment subsystem
mempool.Exit_Mutex = make(chan bool)
metrics.Set.GetOrCreateGauge("mempool_count", func() float64 {
count := float64(0)
mempool.txs.Range(func(k, value interface{}) bool {
count++
return true
})
return count
})
return &mempool, nil
}
func (pool *Mempool) HouseKeeping(height uint64) {
pool.height = height
// this code is executed in conditions which are as follows
// we have to purge old txs which can no longer be mined
var delete_list []crypto.Hash
pool.txs.Range(func(k, value interface{}) bool {
txhash := k.(crypto.Hash)
v := value.(*mempool_object)
if height >= (v.Tx.Height + 10) { // if we have moved 10 heights, chances of reorg are almost nil
delete_list = append(delete_list, txhash)
}
return true
})
for i := range delete_list {
metrics.Set.GetOrCreateCounter("mempool_discarded_total").Inc()
pool.Mempool_Delete_TX(delete_list[i])
}
}
func (pool *Mempool) Shutdown() {
//TODO save mempool tx somewhere
close(pool.Exit_Mutex) // stop relaying
pool.Lock()
defer pool.Unlock()
loggerpool.Info("Mempool stopped")
atomic.AddUint32(&globals.Subsystem_Active, ^uint32(0)) // this decrement 1 fom subsystem
}
// start pool monitoring for changes for some specific time
// this is required so as we can add or discard transactions while selecting work for mining
func (pool *Mempool) Monitor() {
pool.Lock()
pool.modified = false
pool.Unlock()
}
// return whether pool contents have changed
func (pool *Mempool) HasChanged() (result bool) {
pool.Lock()
result = pool.modified
pool.Unlock()
return
}
// a tx should only be added to pool after verification is complete
func (pool *Mempool) Mempool_Add_TX(tx *transaction.Transaction, Height uint64) (result bool) {
result = false
pool.Lock()
defer pool.Unlock()
var object mempool_object
tx_hash := crypto.Hash(tx.GetHash())
dup_within_tx := map[crypto.Hash]bool{}
for i := range tx.Payloads {
if pool.Mempool_Nonce_Used(tx.Payloads[i].Proof.Nonce()) {
return false
}
if _, ok := dup_within_tx[tx.Payloads[i].Proof.Nonce()]; ok {
return false
}
dup_within_tx[tx.Payloads[i].Proof.Nonce()] = true
}
// check if tx already exists, skip it
if _, ok := pool.txs.Load(tx_hash); ok {
//rlog.Debugf("Pool already contains %s, skipping", tx_hash)
return false
}
for i := range tx.Payloads {
pool.nonces.Store(tx.Payloads[i].Proof.Nonce(), true)
}
// we are here means we can add it to pool
object.Tx = tx
object.Height = Height
object.Added = uint64(time.Now().UTC().Unix())
object.Size = uint64(len(tx.Serialize()))
object.FEEperBYTE = tx.Fees() / object.Size
pool.txs.Store(tx_hash, &object)
pool.modified = true // pool has been modified
//pool.sort_list() // sort and update pool list
return true
}
// check whether a tx exists in the pool
func (pool *Mempool) Mempool_TX_Exist(txid crypto.Hash) (result bool) {
//pool.Lock()
//defer pool.Unlock()
if _, ok := pool.txs.Load(txid); ok {
return true
}
return false
}
// check whether a keyimage exists in the pool
func (pool *Mempool) Mempool_Nonce_Used(ki crypto.Hash) (result bool) {
//pool.Lock()
//defer pool.Unlock()
if _, ok := pool.nonces.Load(ki); ok {
return true
}
return false
}
// delete specific tx from pool and return it
// if nil is returned Tx was not found in pool
func (pool *Mempool) Mempool_Delete_TX(txid crypto.Hash) (tx *transaction.Transaction) {
//pool.Lock()
//defer pool.Unlock()
var ok bool
var objecti interface{}
// check if tx already exists, skip it
if objecti, ok = pool.txs.Load(txid); !ok {
// rlog.Warnf("Pool does NOT contain %s, returning nil", txid)
return nil
}
// we reached here means, we have the tx remove it from our list, do maintainance cleapup and discard it
object := objecti.(*mempool_object)
tx = object.Tx
pool.txs.Delete(txid)
// remove all the key images
//TODO
// for i := 0; i < len(object.Tx.Vin); i++ {
// pool.nonces.Delete(object.Tx.Vin[i].(transaction.Txin_to_key).K_image)
// }
for i := range tx.Payloads {
pool.nonces.Delete(tx.Payloads[i].Proof.Nonce())
}
//pool.sort_list() // sort and update pool list
pool.modified = true // pool has been modified
return object.Tx // return the tx
}
// get specific tx from mem pool without removing it
func (pool *Mempool) Mempool_Get_TX(txid crypto.Hash) (tx *transaction.Transaction) {
// pool.Lock()
// defer pool.Unlock()
var ok bool
var objecti interface{}
if objecti, ok = pool.txs.Load(txid); !ok {
//loggerpool.Warnf("Pool does NOT contain %s, returning nil", txid)
return nil
}
// we reached here means, we have the tx, return the pointer back
//object := pool.txs[txid]
object := objecti.(*mempool_object)
return object.Tx
}
// return list of all txs in pool
func (pool *Mempool) Mempool_List_TX() []crypto.Hash {
// pool.Lock()
// defer pool.Unlock()
var list []crypto.Hash
pool.txs.Range(func(k, value interface{}) bool {
txhash := k.(crypto.Hash)
//v := value.(*mempool_object)
//objects = append(objects, *v)
list = append(list, txhash)
return true
})
//pool.sort_list() // sort and update pool list
// list should be as big as spurce list
//list := make([]crypto.Hash, len(pool.sorted_by_fee), len(pool.sorted_by_fee))
//copy(list, pool.sorted_by_fee) // return list sorted by fees
return list
}
// passes back sorting information and length information for easier new block forging
func (pool *Mempool) Mempool_List_TX_SortedInfo() []TX_Sorting_struct {
// pool.Lock()
// defer pool.Unlock()
_, data := pool.sort_list() // sort and update pool list
return data
/* // list should be as big as spurce list
list := make([]TX_Sorting_struct, len(pool.sorted), len(pool.sorted))
copy(list, pool.sorted) // return list sorted by fees
return list
*/
}
// print current mempool txs
// TODO add sorting
func (pool *Mempool) Mempool_Print() {
pool.Lock()
defer pool.Unlock()
var klist []crypto.Hash
var vlist []*mempool_object
pool.txs.Range(func(k, value interface{}) bool {
txhash := k.(crypto.Hash)
v := value.(*mempool_object)
//objects = append(objects, *v)
klist = append(klist, txhash)
vlist = append(vlist, v)
return true
})
loggerpool.Info(fmt.Sprintf("Total TX in mempool = %d\n", len(klist)))
loggerpool.Info(fmt.Sprintf("%20s %14s %7s %7s %6s %32s\n", "Added", "Size", "Height", "TXID"))
for i := range klist {
k := klist[i]
v := vlist[i]
loggerpool.Info(fmt.Sprintf("%20s %14s %7d %7d %6d %32s\n", time.Unix(int64(v.Added), 0).UTC().Format(time.RFC3339),
len(v.Tx.Serialize()), v.Height, k))
}
}
// flush mempool
func (pool *Mempool) Mempool_flush() {
var list []crypto.Hash
pool.txs.Range(func(k, value interface{}) bool {
txhash := k.(crypto.Hash)
//v := value.(*mempool_object)
//objects = append(objects, *v)
list = append(list, txhash)
return true
})
loggerpool.Info("Total TX in mempool", "txcount", len(list))
loggerpool.Info("Flushing mempool")
for i := range list {
pool.Mempool_Delete_TX(list[i])
}
}
// sorts the pool internally
// this function assummes lock is already taken
// ??? if we selecting transactions randomly, why to keep them sorted
func (pool *Mempool) sort_list() ([]crypto.Hash, []TX_Sorting_struct) {
data := make([]TX_Sorting_struct, 0, 512) // we are rarely expectingmore than this entries in mempool
// collect data from pool for sorting
pool.txs.Range(func(k, value interface{}) bool {
txhash := k.(crypto.Hash)
v := value.(*mempool_object)
if v.Height <= pool.height {
data = append(data, TX_Sorting_struct{Hash: txhash, FeesPerByte: v.FEEperBYTE, Size: v.Size})
}
return true
})
// inverted comparision sort to do descending sort
sort.SliceStable(data, func(i, j int) bool { return data[i].FeesPerByte > data[j].FeesPerByte })
sorted_list := make([]crypto.Hash, 0, len(data))
//pool.sorted_by_fee = pool.sorted_by_fee[:0] // empty old slice
for i := range data {
sorted_list = append(sorted_list, data[i].Hash)
}
//pool.sorted = data
return sorted_list, data
}