1564 lines
54 KiB
Go
1564 lines
54 KiB
Go
// Copyright 2009 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package tls
|
|
|
|
import (
|
|
"bytes"
|
|
"container/list"
|
|
"crypto"
|
|
"crypto/ecdsa"
|
|
"crypto/ed25519"
|
|
"crypto/elliptic"
|
|
"crypto/rand"
|
|
"crypto/rsa"
|
|
"crypto/sha512"
|
|
"crypto/x509"
|
|
"errors"
|
|
"fmt"
|
|
"io"
|
|
"net"
|
|
"runtime"
|
|
"sort"
|
|
"strings"
|
|
"sync"
|
|
"time"
|
|
|
|
"github.com/lesismal/llib/std/internal/cpu"
|
|
)
|
|
|
|
const (
|
|
VersionTLS10 = 0x0301
|
|
VersionTLS11 = 0x0302
|
|
VersionTLS12 = 0x0303
|
|
VersionTLS13 = 0x0304
|
|
|
|
// Deprecated: SSLv3 is cryptographically broken, and is no longer
|
|
// supported by this package. See golang.org/issue/32716.
|
|
VersionSSL30 = 0x0300
|
|
)
|
|
|
|
const (
|
|
maxPlaintext = 16384 // maximum plaintext payload length
|
|
maxCiphertext = 16384 + 2048 // maximum ciphertext payload length
|
|
maxCiphertextTLS13 = 16384 + 256 // maximum ciphertext length in TLS 1.3
|
|
recordHeaderLen = 5 // record header length
|
|
maxHandshake = 65536 // maximum handshake we support (protocol max is 16 MB)
|
|
maxUselessRecords = 16 // maximum number of consecutive non-advancing records
|
|
)
|
|
|
|
// TLS record types.
|
|
type recordType uint8
|
|
|
|
const (
|
|
recordTypeChangeCipherSpec recordType = 20
|
|
recordTypeAlert recordType = 21
|
|
recordTypeHandshake recordType = 22
|
|
recordTypeApplicationData recordType = 23
|
|
)
|
|
|
|
// TLS handshake message types.
|
|
const (
|
|
typeHelloRequest uint8 = 0
|
|
typeClientHello uint8 = 1
|
|
typeServerHello uint8 = 2
|
|
typeNewSessionTicket uint8 = 4
|
|
typeEndOfEarlyData uint8 = 5
|
|
typeEncryptedExtensions uint8 = 8
|
|
typeCertificate uint8 = 11
|
|
typeServerKeyExchange uint8 = 12
|
|
typeCertificateRequest uint8 = 13
|
|
typeServerHelloDone uint8 = 14
|
|
typeCertificateVerify uint8 = 15
|
|
typeClientKeyExchange uint8 = 16
|
|
typeFinished uint8 = 20
|
|
typeCertificateStatus uint8 = 22
|
|
typeKeyUpdate uint8 = 24
|
|
typeNextProtocol uint8 = 67 // Not IANA assigned
|
|
typeMessageHash uint8 = 254 // synthetic message
|
|
)
|
|
|
|
// TLS compression types.
|
|
const (
|
|
compressionNone uint8 = 0
|
|
)
|
|
|
|
// TLS extension numbers
|
|
const (
|
|
extensionServerName uint16 = 0
|
|
extensionStatusRequest uint16 = 5
|
|
extensionSupportedCurves uint16 = 10 // supported_groups in TLS 1.3, see RFC 8446, Section 4.2.7
|
|
extensionSupportedPoints uint16 = 11
|
|
extensionSignatureAlgorithms uint16 = 13
|
|
extensionALPN uint16 = 16
|
|
extensionSCT uint16 = 18
|
|
extensionSessionTicket uint16 = 35
|
|
extensionPreSharedKey uint16 = 41
|
|
extensionEarlyData uint16 = 42
|
|
extensionSupportedVersions uint16 = 43
|
|
extensionCookie uint16 = 44
|
|
extensionPSKModes uint16 = 45
|
|
extensionCertificateAuthorities uint16 = 47
|
|
extensionSignatureAlgorithmsCert uint16 = 50
|
|
extensionKeyShare uint16 = 51
|
|
extensionRenegotiationInfo uint16 = 0xff01
|
|
)
|
|
|
|
// TLS signaling cipher suite values
|
|
const (
|
|
scsvRenegotiation uint16 = 0x00ff
|
|
)
|
|
|
|
// CurveID is the type of a TLS identifier for an elliptic curve. See
|
|
// https://www.iana.org/assignments/tls-parameters/tls-parameters.xml#tls-parameters-8.
|
|
//
|
|
// In TLS 1.3, this type is called NamedGroup, but at this time this library
|
|
// only supports Elliptic Curve based groups. See RFC 8446, Section 4.2.7.
|
|
type CurveID uint16
|
|
|
|
const (
|
|
CurveP256 CurveID = 23
|
|
CurveP384 CurveID = 24
|
|
CurveP521 CurveID = 25
|
|
X25519 CurveID = 29
|
|
)
|
|
|
|
// TLS 1.3 Key Share. See RFC 8446, Section 4.2.8.
|
|
type keyShare struct {
|
|
group CurveID
|
|
data []byte
|
|
}
|
|
|
|
// TLS 1.3 PSK Key Exchange Modes. See RFC 8446, Section 4.2.9.
|
|
const (
|
|
pskModePlain uint8 = 0
|
|
pskModeDHE uint8 = 1
|
|
)
|
|
|
|
// TLS 1.3 PSK Identity. Can be a Session Ticket, or a reference to a saved
|
|
// session. See RFC 8446, Section 4.2.11.
|
|
type pskIdentity struct {
|
|
label []byte
|
|
obfuscatedTicketAge uint32
|
|
}
|
|
|
|
// TLS Elliptic Curve Point Formats
|
|
// https://www.iana.org/assignments/tls-parameters/tls-parameters.xml#tls-parameters-9
|
|
const (
|
|
pointFormatUncompressed uint8 = 0
|
|
)
|
|
|
|
// TLS CertificateStatusType (RFC 3546)
|
|
const (
|
|
statusTypeOCSP uint8 = 1
|
|
)
|
|
|
|
// Certificate types (for certificateRequestMsg)
|
|
const (
|
|
certTypeRSASign = 1
|
|
certTypeECDSASign = 64 // ECDSA or EdDSA keys, see RFC 8422, Section 3.
|
|
)
|
|
|
|
// Signature algorithms (for internal signaling use). Starting at 225 to avoid overlap with
|
|
// TLS 1.2 codepoints (RFC 5246, Appendix A.4.1), with which these have nothing to do.
|
|
const (
|
|
signaturePKCS1v15 uint8 = iota + 225
|
|
signatureRSAPSS
|
|
signatureECDSA
|
|
signatureEd25519
|
|
)
|
|
|
|
// directSigning is a standard Hash value that signals that no pre-hashing
|
|
// should be performed, and that the input should be signed directly. It is the
|
|
// hash function associated with the Ed25519 signature scheme.
|
|
var directSigning crypto.Hash = 0
|
|
|
|
// supportedSignatureAlgorithms contains the signature and hash algorithms that
|
|
// the code advertises as supported in a TLS 1.2+ ClientHello and in a TLS 1.2+
|
|
// CertificateRequest. The two fields are merged to match with TLS 1.3.
|
|
// Note that in TLS 1.2, the ECDSA algorithms are not constrained to P-256, etc.
|
|
var supportedSignatureAlgorithms = []SignatureScheme{
|
|
PSSWithSHA256,
|
|
ECDSAWithP256AndSHA256,
|
|
Ed25519,
|
|
PSSWithSHA384,
|
|
PSSWithSHA512,
|
|
PKCS1WithSHA256,
|
|
PKCS1WithSHA384,
|
|
PKCS1WithSHA512,
|
|
ECDSAWithP384AndSHA384,
|
|
ECDSAWithP521AndSHA512,
|
|
PKCS1WithSHA1,
|
|
ECDSAWithSHA1,
|
|
}
|
|
|
|
// helloRetryRequestRandom is set as the Random value of a ServerHello
|
|
// to signal that the message is actually a HelloRetryRequest.
|
|
var helloRetryRequestRandom = []byte{ // See RFC 8446, Section 4.1.3.
|
|
0xCF, 0x21, 0xAD, 0x74, 0xE5, 0x9A, 0x61, 0x11,
|
|
0xBE, 0x1D, 0x8C, 0x02, 0x1E, 0x65, 0xB8, 0x91,
|
|
0xC2, 0xA2, 0x11, 0x16, 0x7A, 0xBB, 0x8C, 0x5E,
|
|
0x07, 0x9E, 0x09, 0xE2, 0xC8, 0xA8, 0x33, 0x9C,
|
|
}
|
|
|
|
const (
|
|
// downgradeCanaryTLS12 or downgradeCanaryTLS11 is embedded in the server
|
|
// random as a downgrade protection if the server would be capable of
|
|
// negotiating a higher version. See RFC 8446, Section 4.1.3.
|
|
downgradeCanaryTLS12 = "DOWNGRD\x01"
|
|
downgradeCanaryTLS11 = "DOWNGRD\x00"
|
|
)
|
|
|
|
// testingOnlyForceDowngradeCanary is set in tests to force the server side to
|
|
// include downgrade canaries even if it's using its highers supported version.
|
|
var testingOnlyForceDowngradeCanary bool
|
|
|
|
// ConnectionState records basic TLS details about the connection.
|
|
type ConnectionState struct {
|
|
// Version is the TLS version used by the connection (e.g. VersionTLS12).
|
|
Version uint16
|
|
|
|
// HandshakeComplete is true if the handshake has concluded.
|
|
HandshakeComplete bool
|
|
|
|
// DidResume is true if this connection was successfully resumed from a
|
|
// previous session with a session ticket or similar mechanism.
|
|
DidResume bool
|
|
|
|
// CipherSuite is the cipher suite negotiated for the connection (e.g.
|
|
// TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, TLS_AES_128_GCM_SHA256).
|
|
CipherSuite uint16
|
|
|
|
// NegotiatedProtocol is the application protocol negotiated with ALPN.
|
|
NegotiatedProtocol string
|
|
|
|
// NegotiatedProtocolIsMutual used to indicate a mutual NPN negotiation.
|
|
//
|
|
// Deprecated: this value is always true.
|
|
NegotiatedProtocolIsMutual bool
|
|
|
|
// ServerName is the value of the Server Name Indication extension sent by
|
|
// the client. It's available both on the server and on the client side.
|
|
ServerName string
|
|
|
|
// PeerCertificates are the parsed certificates sent by the peer, in the
|
|
// order in which they were sent. The first element is the leaf certificate
|
|
// that the connection is verified against.
|
|
//
|
|
// On the client side, it can't be empty. On the server side, it can be
|
|
// empty if Config.ClientAuth is not RequireAnyClientCert or
|
|
// RequireAndVerifyClientCert.
|
|
PeerCertificates []*x509.Certificate
|
|
|
|
// VerifiedChains is a list of one or more chains where the first element is
|
|
// PeerCertificates[0] and the last element is from Config.RootCAs (on the
|
|
// client side) or Config.ClientCAs (on the server side).
|
|
//
|
|
// On the client side, it's set if Config.InsecureSkipVerify is false. On
|
|
// the server side, it's set if Config.ClientAuth is VerifyClientCertIfGiven
|
|
// (and the peer provided a certificate) or RequireAndVerifyClientCert.
|
|
VerifiedChains [][]*x509.Certificate
|
|
|
|
// SignedCertificateTimestamps is a list of SCTs provided by the peer
|
|
// through the TLS handshake for the leaf certificate, if any.
|
|
SignedCertificateTimestamps [][]byte
|
|
|
|
// OCSPResponse is a stapled Online Certificate Status Protocol (OCSP)
|
|
// response provided by the peer for the leaf certificate, if any.
|
|
OCSPResponse []byte
|
|
|
|
// TLSUnique contains the "tls-unique" channel binding value (see RFC 5929,
|
|
// Section 3). This value will be nil for TLS 1.3 connections and for all
|
|
// resumed connections.
|
|
//
|
|
// Deprecated: there are conditions in which this value might not be unique
|
|
// to a connection. See the Security Considerations sections of RFC 5705 and
|
|
// RFC 7627, and https://mitls.org/pages/attacks/3SHAKE#channelbindings.
|
|
TLSUnique []byte
|
|
|
|
// ekm is a closure exposed via ExportKeyingMaterial.
|
|
ekm func(label string, context []byte, length int) ([]byte, error)
|
|
}
|
|
|
|
// ExportKeyingMaterial returns length bytes of exported key material in a new
|
|
// slice as defined in RFC 5705. If context is nil, it is not used as part of
|
|
// the seed. If the connection was set to allow renegotiation via
|
|
// Config.Renegotiation, this function will return an error.
|
|
func (cs *ConnectionState) ExportKeyingMaterial(label string, context []byte, length int) ([]byte, error) {
|
|
return cs.ekm(label, context, length)
|
|
}
|
|
|
|
// ClientAuthType declares the policy the server will follow for
|
|
// TLS Client Authentication.
|
|
type ClientAuthType int
|
|
|
|
const (
|
|
// NoClientCert indicates that no client certificate should be requested
|
|
// during the handshake, and if any certificates are sent they will not
|
|
// be verified.
|
|
NoClientCert ClientAuthType = iota
|
|
// RequestClientCert indicates that a client certificate should be requested
|
|
// during the handshake, but does not require that the client send any
|
|
// certificates.
|
|
RequestClientCert
|
|
// RequireAnyClientCert indicates that a client certificate should be requested
|
|
// during the handshake, and that at least one certificate is required to be
|
|
// sent by the client, but that certificate is not required to be valid.
|
|
RequireAnyClientCert
|
|
// VerifyClientCertIfGiven indicates that a client certificate should be requested
|
|
// during the handshake, but does not require that the client sends a
|
|
// certificate. If the client does send a certificate it is required to be
|
|
// valid.
|
|
VerifyClientCertIfGiven
|
|
// RequireAndVerifyClientCert indicates that a client certificate should be requested
|
|
// during the handshake, and that at least one valid certificate is required
|
|
// to be sent by the client.
|
|
RequireAndVerifyClientCert
|
|
)
|
|
|
|
// requiresClientCert reports whether the ClientAuthType requires a client
|
|
// certificate to be provided.
|
|
func requiresClientCert(c ClientAuthType) bool {
|
|
switch c {
|
|
case RequireAnyClientCert, RequireAndVerifyClientCert:
|
|
return true
|
|
default:
|
|
return false
|
|
}
|
|
}
|
|
|
|
// ClientSessionState contains the state needed by clients to resume TLS
|
|
// sessions.
|
|
type ClientSessionState struct {
|
|
sessionTicket []uint8 // Encrypted ticket used for session resumption with server
|
|
vers uint16 // TLS version negotiated for the session
|
|
cipherSuite uint16 // Ciphersuite negotiated for the session
|
|
masterSecret []byte // Full handshake MasterSecret, or TLS 1.3 resumption_master_secret
|
|
serverCertificates []*x509.Certificate // Certificate chain presented by the server
|
|
verifiedChains [][]*x509.Certificate // Certificate chains we built for verification
|
|
receivedAt time.Time // When the session ticket was received from the server
|
|
ocspResponse []byte // Stapled OCSP response presented by the server
|
|
scts [][]byte // SCTs presented by the server
|
|
|
|
// TLS 1.3 fields.
|
|
nonce []byte // Ticket nonce sent by the server, to derive PSK
|
|
useBy time.Time // Expiration of the ticket lifetime as set by the server
|
|
ageAdd uint32 // Random obfuscation factor for sending the ticket age
|
|
}
|
|
|
|
// ClientSessionCache is a cache of ClientSessionState objects that can be used
|
|
// by a client to resume a TLS session with a given server. ClientSessionCache
|
|
// implementations should expect to be called concurrently from different
|
|
// goroutines. Up to TLS 1.2, only ticket-based resumption is supported, not
|
|
// SessionID-based resumption. In TLS 1.3 they were merged into PSK modes, which
|
|
// are supported via this interface.
|
|
type ClientSessionCache interface {
|
|
// Get searches for a ClientSessionState associated with the given key.
|
|
// On return, ok is true if one was found.
|
|
Get(sessionKey string) (session *ClientSessionState, ok bool)
|
|
|
|
// Put adds the ClientSessionState to the cache with the given key. It might
|
|
// get called multiple times in a connection if a TLS 1.3 server provides
|
|
// more than one session ticket. If called with a nil *ClientSessionState,
|
|
// it should remove the cache entry.
|
|
Put(sessionKey string, cs *ClientSessionState)
|
|
}
|
|
|
|
//go:generate stringer -type=SignatureScheme,CurveID,ClientAuthType -output=common_string.go
|
|
|
|
// SignatureScheme identifies a signature algorithm supported by TLS. See
|
|
// RFC 8446, Section 4.2.3.
|
|
type SignatureScheme uint16
|
|
|
|
const (
|
|
// RSASSA-PKCS1-v1_5 algorithms.
|
|
PKCS1WithSHA256 SignatureScheme = 0x0401
|
|
PKCS1WithSHA384 SignatureScheme = 0x0501
|
|
PKCS1WithSHA512 SignatureScheme = 0x0601
|
|
|
|
// RSASSA-PSS algorithms with public key OID rsaEncryption.
|
|
PSSWithSHA256 SignatureScheme = 0x0804
|
|
PSSWithSHA384 SignatureScheme = 0x0805
|
|
PSSWithSHA512 SignatureScheme = 0x0806
|
|
|
|
// ECDSA algorithms. Only constrained to a specific curve in TLS 1.3.
|
|
ECDSAWithP256AndSHA256 SignatureScheme = 0x0403
|
|
ECDSAWithP384AndSHA384 SignatureScheme = 0x0503
|
|
ECDSAWithP521AndSHA512 SignatureScheme = 0x0603
|
|
|
|
// EdDSA algorithms.
|
|
Ed25519 SignatureScheme = 0x0807
|
|
|
|
// Legacy signature and hash algorithms for TLS 1.2.
|
|
PKCS1WithSHA1 SignatureScheme = 0x0201
|
|
ECDSAWithSHA1 SignatureScheme = 0x0203
|
|
)
|
|
|
|
// ClientHelloInfo contains information from a ClientHello message in order to
|
|
// guide application logic in the GetCertificate and GetConfigForClient callbacks.
|
|
type ClientHelloInfo struct {
|
|
// CipherSuites lists the CipherSuites supported by the client (e.g.
|
|
// TLS_AES_128_GCM_SHA256, TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256).
|
|
CipherSuites []uint16
|
|
|
|
// ServerName indicates the name of the server requested by the client
|
|
// in order to support virtual hosting. ServerName is only set if the
|
|
// client is using SNI (see RFC 4366, Section 3.1).
|
|
ServerName string
|
|
|
|
// SupportedCurves lists the elliptic curves supported by the client.
|
|
// SupportedCurves is set only if the Supported Elliptic Curves
|
|
// Extension is being used (see RFC 4492, Section 5.1.1).
|
|
SupportedCurves []CurveID
|
|
|
|
// SupportedPoints lists the point formats supported by the client.
|
|
// SupportedPoints is set only if the Supported Point Formats Extension
|
|
// is being used (see RFC 4492, Section 5.1.2).
|
|
SupportedPoints []uint8
|
|
|
|
// SignatureSchemes lists the signature and hash schemes that the client
|
|
// is willing to verify. SignatureSchemes is set only if the Signature
|
|
// Algorithms Extension is being used (see RFC 5246, Section 7.4.1.4.1).
|
|
SignatureSchemes []SignatureScheme
|
|
|
|
// SupportedProtos lists the application protocols supported by the client.
|
|
// SupportedProtos is set only if the Application-Layer Protocol
|
|
// Negotiation Extension is being used (see RFC 7301, Section 3.1).
|
|
//
|
|
// Servers can select a protocol by setting Config.NextProtos in a
|
|
// GetConfigForClient return value.
|
|
SupportedProtos []string
|
|
|
|
// SupportedVersions lists the TLS versions supported by the client.
|
|
// For TLS versions less than 1.3, this is extrapolated from the max
|
|
// version advertised by the client, so values other than the greatest
|
|
// might be rejected if used.
|
|
SupportedVersions []uint16
|
|
|
|
// Conn is the underlying net.Conn for the connection. Do not read
|
|
// from, or write to, this connection; that will cause the TLS
|
|
// connection to fail.
|
|
Conn net.Conn
|
|
|
|
// config is embedded by the GetCertificate or GetConfigForClient caller,
|
|
// for use with SupportsCertificate.
|
|
config *Config
|
|
}
|
|
|
|
// CertificateRequestInfo contains information from a server's
|
|
// CertificateRequest message, which is used to demand a certificate and proof
|
|
// of control from a client.
|
|
type CertificateRequestInfo struct {
|
|
// AcceptableCAs contains zero or more, DER-encoded, X.501
|
|
// Distinguished Names. These are the names of root or intermediate CAs
|
|
// that the server wishes the returned certificate to be signed by. An
|
|
// empty slice indicates that the server has no preference.
|
|
AcceptableCAs [][]byte
|
|
|
|
// SignatureSchemes lists the signature schemes that the server is
|
|
// willing to verify.
|
|
SignatureSchemes []SignatureScheme
|
|
|
|
// Version is the TLS version that was negotiated for this connection.
|
|
Version uint16
|
|
}
|
|
|
|
// RenegotiationSupport enumerates the different levels of support for TLS
|
|
// renegotiation. TLS renegotiation is the act of performing subsequent
|
|
// handshakes on a connection after the first. This significantly complicates
|
|
// the state machine and has been the source of numerous, subtle security
|
|
// issues. Initiating a renegotiation is not supported, but support for
|
|
// accepting renegotiation requests may be enabled.
|
|
//
|
|
// Even when enabled, the server may not change its identity between handshakes
|
|
// (i.e. the leaf certificate must be the same). Additionally, concurrent
|
|
// handshake and application data flow is not permitted so renegotiation can
|
|
// only be used with protocols that synchronise with the renegotiation, such as
|
|
// HTTPS.
|
|
//
|
|
// Renegotiation is not defined in TLS 1.3.
|
|
type RenegotiationSupport int
|
|
|
|
const (
|
|
// RenegotiateNever disables renegotiation.
|
|
RenegotiateNever RenegotiationSupport = iota
|
|
|
|
// RenegotiateOnceAsClient allows a remote server to request
|
|
// renegotiation once per connection.
|
|
RenegotiateOnceAsClient
|
|
|
|
// RenegotiateFreelyAsClient allows a remote server to repeatedly
|
|
// request renegotiation.
|
|
RenegotiateFreelyAsClient
|
|
)
|
|
|
|
// A Config structure is used to configure a TLS client or server.
|
|
// After one has been passed to a TLS function it must not be
|
|
// modified. A Config may be reused; the tls package will also not
|
|
// modify it.
|
|
type Config struct {
|
|
// Rand provides the source of entropy for nonces and RSA blinding.
|
|
// If Rand is nil, TLS uses the cryptographic random reader in package
|
|
// crypto/rand.
|
|
// The Reader must be safe for use by multiple goroutines.
|
|
Rand io.Reader
|
|
|
|
// Time returns the current time as the number of seconds since the epoch.
|
|
// If Time is nil, TLS uses time.Now.
|
|
Time func() time.Time
|
|
|
|
// Certificates contains one or more certificate chains to present to the
|
|
// other side of the connection. The first certificate compatible with the
|
|
// peer's requirements is selected automatically.
|
|
//
|
|
// Server configurations must set one of Certificates, GetCertificate or
|
|
// GetConfigForClient. Clients doing client-authentication may set either
|
|
// Certificates or GetClientCertificate.
|
|
//
|
|
// Note: if there are multiple Certificates, and they don't have the
|
|
// optional field Leaf set, certificate selection will incur a significant
|
|
// per-handshake performance cost.
|
|
Certificates []Certificate
|
|
|
|
// NameToCertificate maps from a certificate name to an element of
|
|
// Certificates. Note that a certificate name can be of the form
|
|
// '*.example.com' and so doesn't have to be a domain name as such.
|
|
//
|
|
// Deprecated: NameToCertificate only allows associating a single
|
|
// certificate with a given name. Leave this field nil to let the library
|
|
// select the first compatible chain from Certificates.
|
|
NameToCertificate map[string]*Certificate
|
|
|
|
// GetCertificate returns a Certificate based on the given
|
|
// ClientHelloInfo. It will only be called if the client supplies SNI
|
|
// information or if Certificates is empty.
|
|
//
|
|
// If GetCertificate is nil or returns nil, then the certificate is
|
|
// retrieved from NameToCertificate. If NameToCertificate is nil, the
|
|
// best element of Certificates will be used.
|
|
GetCertificate func(*ClientHelloInfo) (*Certificate, error)
|
|
|
|
// GetClientCertificate, if not nil, is called when a server requests a
|
|
// certificate from a client. If set, the contents of Certificates will
|
|
// be ignored.
|
|
//
|
|
// If GetClientCertificate returns an error, the handshake will be
|
|
// aborted and that error will be returned. Otherwise
|
|
// GetClientCertificate must return a non-nil Certificate. If
|
|
// Certificate.Certificate is empty then no certificate will be sent to
|
|
// the server. If this is unacceptable to the server then it may abort
|
|
// the handshake.
|
|
//
|
|
// GetClientCertificate may be called multiple times for the same
|
|
// connection if renegotiation occurs or if TLS 1.3 is in use.
|
|
GetClientCertificate func(*CertificateRequestInfo) (*Certificate, error)
|
|
|
|
// GetConfigForClient, if not nil, is called after a ClientHello is
|
|
// received from a client. It may return a non-nil Config in order to
|
|
// change the Config that will be used to handle this connection. If
|
|
// the returned Config is nil, the original Config will be used. The
|
|
// Config returned by this callback may not be subsequently modified.
|
|
//
|
|
// If GetConfigForClient is nil, the Config passed to Server() will be
|
|
// used for all connections.
|
|
//
|
|
// If SessionTicketKey was explicitly set on the returned Config, or if
|
|
// SetSessionTicketKeys was called on the returned Config, those keys will
|
|
// be used. Otherwise, the original Config keys will be used (and possibly
|
|
// rotated if they are automatically managed).
|
|
GetConfigForClient func(*ClientHelloInfo) (*Config, error)
|
|
|
|
// VerifyPeerCertificate, if not nil, is called after normal
|
|
// certificate verification by either a TLS client or server. It
|
|
// receives the raw ASN.1 certificates provided by the peer and also
|
|
// any verified chains that normal processing found. If it returns a
|
|
// non-nil error, the handshake is aborted and that error results.
|
|
//
|
|
// If normal verification fails then the handshake will abort before
|
|
// considering this callback. If normal verification is disabled by
|
|
// setting InsecureSkipVerify, or (for a server) when ClientAuth is
|
|
// RequestClientCert or RequireAnyClientCert, then this callback will
|
|
// be considered but the verifiedChains argument will always be nil.
|
|
VerifyPeerCertificate func(rawCerts [][]byte, verifiedChains [][]*x509.Certificate) error
|
|
|
|
// VerifyConnection, if not nil, is called after normal certificate
|
|
// verification and after VerifyPeerCertificate by either a TLS client
|
|
// or server. If it returns a non-nil error, the handshake is aborted
|
|
// and that error results.
|
|
//
|
|
// If normal verification fails then the handshake will abort before
|
|
// considering this callback. This callback will run for all connections
|
|
// regardless of InsecureSkipVerify or ClientAuth settings.
|
|
VerifyConnection func(ConnectionState) error
|
|
|
|
// RootCAs defines the set of root certificate authorities
|
|
// that clients use when verifying server certificates.
|
|
// If RootCAs is nil, TLS uses the host's root CA set.
|
|
RootCAs *x509.CertPool
|
|
|
|
// NextProtos is a list of supported application level protocols, in
|
|
// order of preference.
|
|
NextProtos []string
|
|
|
|
// ServerName is used to verify the hostname on the returned
|
|
// certificates unless InsecureSkipVerify is given. It is also included
|
|
// in the client's handshake to support virtual hosting unless it is
|
|
// an IP address.
|
|
ServerName string
|
|
|
|
// ClientAuth determines the server's policy for
|
|
// TLS Client Authentication. The default is NoClientCert.
|
|
ClientAuth ClientAuthType
|
|
|
|
// ClientCAs defines the set of root certificate authorities
|
|
// that servers use if required to verify a client certificate
|
|
// by the policy in ClientAuth.
|
|
ClientCAs *x509.CertPool
|
|
|
|
// InsecureSkipVerify controls whether a client verifies the server's
|
|
// certificate chain and host name. If InsecureSkipVerify is true, crypto/tls
|
|
// accepts any certificate presented by the server and any host name in that
|
|
// certificate. In this mode, TLS is susceptible to machine-in-the-middle
|
|
// attacks unless custom verification is used. This should be used only for
|
|
// testing or in combination with VerifyConnection or VerifyPeerCertificate.
|
|
InsecureSkipVerify bool
|
|
|
|
// CipherSuites is a list of supported cipher suites for TLS versions up to
|
|
// TLS 1.2. If CipherSuites is nil, a default list of secure cipher suites
|
|
// is used, with a preference order based on hardware performance. The
|
|
// default cipher suites might change over Go versions. Note that TLS 1.3
|
|
// ciphersuites are not configurable.
|
|
CipherSuites []uint16
|
|
|
|
// PreferServerCipherSuites controls whether the server selects the
|
|
// client's most preferred ciphersuite, or the server's most preferred
|
|
// ciphersuite. If true then the server's preference, as expressed in
|
|
// the order of elements in CipherSuites, is used.
|
|
PreferServerCipherSuites bool
|
|
|
|
// SessionTicketsDisabled may be set to true to disable session ticket and
|
|
// PSK (resumption) support. Note that on clients, session ticket support is
|
|
// also disabled if ClientSessionCache is nil.
|
|
SessionTicketsDisabled bool
|
|
|
|
// SessionTicketKey is used by TLS servers to provide session resumption.
|
|
// See RFC 5077 and the PSK mode of RFC 8446. If zero, it will be filled
|
|
// with random data before the first server handshake.
|
|
//
|
|
// Deprecated: if this field is left at zero, session ticket keys will be
|
|
// automatically rotated every day and dropped after seven days. For
|
|
// customizing the rotation schedule or synchronizing servers that are
|
|
// terminating connections for the same host, use SetSessionTicketKeys.
|
|
SessionTicketKey [32]byte
|
|
|
|
// ClientSessionCache is a cache of ClientSessionState entries for TLS
|
|
// session resumption. It is only used by clients.
|
|
ClientSessionCache ClientSessionCache
|
|
|
|
// MinVersion contains the minimum TLS version that is acceptable.
|
|
// If zero, TLS 1.0 is currently taken as the minimum.
|
|
MinVersion uint16
|
|
|
|
// MaxVersion contains the maximum TLS version that is acceptable.
|
|
// If zero, the maximum version supported by this package is used,
|
|
// which is currently TLS 1.3.
|
|
MaxVersion uint16
|
|
|
|
// CurvePreferences contains the elliptic curves that will be used in
|
|
// an ECDHE handshake, in preference order. If empty, the default will
|
|
// be used. The client will use the first preference as the type for
|
|
// its key share in TLS 1.3. This may change in the future.
|
|
CurvePreferences []CurveID
|
|
|
|
// DynamicRecordSizingDisabled disables adaptive sizing of TLS records.
|
|
// When true, the largest possible TLS record size is always used. When
|
|
// false, the size of TLS records may be adjusted in an attempt to
|
|
// improve latency.
|
|
DynamicRecordSizingDisabled bool
|
|
|
|
// Renegotiation controls what types of renegotiation are supported.
|
|
// The default, none, is correct for the vast majority of applications.
|
|
Renegotiation RenegotiationSupport
|
|
|
|
// KeyLogWriter optionally specifies a destination for TLS master secrets
|
|
// in NSS key log format that can be used to allow external programs
|
|
// such as Wireshark to decrypt TLS connections.
|
|
// See https://developer.mozilla.org/en-US/docs/Mozilla/Projects/NSS/Key_Log_Format.
|
|
// Use of KeyLogWriter compromises security and should only be
|
|
// used for debugging.
|
|
KeyLogWriter io.Writer
|
|
|
|
// mutex protects sessionTicketKeys and autoSessionTicketKeys.
|
|
mutex sync.RWMutex
|
|
// sessionTicketKeys contains zero or more ticket keys. If set, it means the
|
|
// the keys were set with SessionTicketKey or SetSessionTicketKeys. The
|
|
// first key is used for new tickets and any subsequent keys can be used to
|
|
// decrypt old tickets. The slice contents are not protected by the mutex
|
|
// and are immutable.
|
|
sessionTicketKeys []ticketKey
|
|
// autoSessionTicketKeys is like sessionTicketKeys but is owned by the
|
|
// auto-rotation logic. See Config.ticketKeys.
|
|
autoSessionTicketKeys []ticketKey
|
|
}
|
|
|
|
const (
|
|
// ticketKeyNameLen is the number of bytes of identifier that is prepended to
|
|
// an encrypted session ticket in order to identify the key used to encrypt it.
|
|
ticketKeyNameLen = 16
|
|
|
|
// ticketKeyLifetime is how long a ticket key remains valid and can be used to
|
|
// resume a client connection.
|
|
ticketKeyLifetime = 7 * 24 * time.Hour // 7 days
|
|
|
|
// ticketKeyRotation is how often the server should rotate the session ticket key
|
|
// that is used for new tickets.
|
|
ticketKeyRotation = 24 * time.Hour
|
|
)
|
|
|
|
// ticketKey is the internal representation of a session ticket key.
|
|
type ticketKey struct {
|
|
// keyName is an opaque byte string that serves to identify the session
|
|
// ticket key. It's exposed as plaintext in every session ticket.
|
|
keyName [ticketKeyNameLen]byte
|
|
aesKey [16]byte
|
|
hmacKey [16]byte
|
|
// created is the time at which this ticket key was created. See Config.ticketKeys.
|
|
created time.Time
|
|
}
|
|
|
|
// ticketKeyFromBytes converts from the external representation of a session
|
|
// ticket key to a ticketKey. Externally, session ticket keys are 32 random
|
|
// bytes and this function expands that into sufficient name and key material.
|
|
func (c *Config) ticketKeyFromBytes(b [32]byte) (key ticketKey) {
|
|
hashed := sha512.Sum512(b[:])
|
|
copy(key.keyName[:], hashed[:ticketKeyNameLen])
|
|
copy(key.aesKey[:], hashed[ticketKeyNameLen:ticketKeyNameLen+16])
|
|
copy(key.hmacKey[:], hashed[ticketKeyNameLen+16:ticketKeyNameLen+32])
|
|
key.created = c.time()
|
|
return key
|
|
}
|
|
|
|
// maxSessionTicketLifetime is the maximum allowed lifetime of a TLS 1.3 session
|
|
// ticket, and the lifetime we set for tickets we send.
|
|
const maxSessionTicketLifetime = 7 * 24 * time.Hour
|
|
|
|
// Clone returns a shallow clone of c or nil if c is nil. It is safe to clone a Config that is
|
|
// being used concurrently by a TLS client or server.
|
|
func (c *Config) Clone() *Config {
|
|
if c == nil {
|
|
return nil
|
|
}
|
|
c.mutex.RLock()
|
|
defer c.mutex.RUnlock()
|
|
return &Config{
|
|
Rand: c.Rand,
|
|
Time: c.Time,
|
|
Certificates: c.Certificates,
|
|
NameToCertificate: c.NameToCertificate,
|
|
GetCertificate: c.GetCertificate,
|
|
GetClientCertificate: c.GetClientCertificate,
|
|
GetConfigForClient: c.GetConfigForClient,
|
|
VerifyPeerCertificate: c.VerifyPeerCertificate,
|
|
VerifyConnection: c.VerifyConnection,
|
|
RootCAs: c.RootCAs,
|
|
NextProtos: c.NextProtos,
|
|
ServerName: c.ServerName,
|
|
ClientAuth: c.ClientAuth,
|
|
ClientCAs: c.ClientCAs,
|
|
InsecureSkipVerify: c.InsecureSkipVerify,
|
|
CipherSuites: c.CipherSuites,
|
|
PreferServerCipherSuites: c.PreferServerCipherSuites,
|
|
SessionTicketsDisabled: c.SessionTicketsDisabled,
|
|
SessionTicketKey: c.SessionTicketKey,
|
|
ClientSessionCache: c.ClientSessionCache,
|
|
MinVersion: c.MinVersion,
|
|
MaxVersion: c.MaxVersion,
|
|
CurvePreferences: c.CurvePreferences,
|
|
DynamicRecordSizingDisabled: c.DynamicRecordSizingDisabled,
|
|
Renegotiation: c.Renegotiation,
|
|
KeyLogWriter: c.KeyLogWriter,
|
|
sessionTicketKeys: c.sessionTicketKeys,
|
|
autoSessionTicketKeys: c.autoSessionTicketKeys,
|
|
}
|
|
}
|
|
|
|
// deprecatedSessionTicketKey is set as the prefix of SessionTicketKey if it was
|
|
// randomized for backwards compatibility but is not in use.
|
|
var deprecatedSessionTicketKey = []byte("DEPRECATED")
|
|
|
|
// initLegacySessionTicketKeyRLocked ensures the legacy SessionTicketKey field is
|
|
// randomized if empty, and that sessionTicketKeys is populated from it otherwise.
|
|
func (c *Config) initLegacySessionTicketKeyRLocked() {
|
|
// Don't write if SessionTicketKey is already defined as our deprecated string,
|
|
// or if it is defined by the user but sessionTicketKeys is already set.
|
|
if c.SessionTicketKey != [32]byte{} &&
|
|
(bytes.HasPrefix(c.SessionTicketKey[:], deprecatedSessionTicketKey) || len(c.sessionTicketKeys) > 0) {
|
|
return
|
|
}
|
|
|
|
// We need to write some data, so get an exclusive lock and re-check any conditions.
|
|
c.mutex.RUnlock()
|
|
defer c.mutex.RLock()
|
|
c.mutex.Lock()
|
|
defer c.mutex.Unlock()
|
|
if c.SessionTicketKey == [32]byte{} {
|
|
if _, err := io.ReadFull(c.rand(), c.SessionTicketKey[:]); err != nil {
|
|
panic(fmt.Sprintf("tls: unable to generate random session ticket key: %v", err))
|
|
}
|
|
// Write the deprecated prefix at the beginning so we know we created
|
|
// it. This key with the DEPRECATED prefix isn't used as an actual
|
|
// session ticket key, and is only randomized in case the application
|
|
// reuses it for some reason.
|
|
copy(c.SessionTicketKey[:], deprecatedSessionTicketKey)
|
|
} else if !bytes.HasPrefix(c.SessionTicketKey[:], deprecatedSessionTicketKey) && len(c.sessionTicketKeys) == 0 {
|
|
c.sessionTicketKeys = []ticketKey{c.ticketKeyFromBytes(c.SessionTicketKey)}
|
|
}
|
|
|
|
}
|
|
|
|
// ticketKeys returns the ticketKeys for this connection.
|
|
// If configForClient has explicitly set keys, those will
|
|
// be returned. Otherwise, the keys on c will be used and
|
|
// may be rotated if auto-managed.
|
|
// During rotation, any expired session ticket keys are deleted from
|
|
// c.sessionTicketKeys. If the session ticket key that is currently
|
|
// encrypting tickets (ie. the first ticketKey in c.sessionTicketKeys)
|
|
// is not fresh, then a new session ticket key will be
|
|
// created and prepended to c.sessionTicketKeys.
|
|
func (c *Config) ticketKeys(configForClient *Config) []ticketKey {
|
|
// If the ConfigForClient callback returned a Config with explicitly set
|
|
// keys, use those, otherwise just use the original Config.
|
|
if configForClient != nil {
|
|
configForClient.mutex.RLock()
|
|
if configForClient.SessionTicketsDisabled {
|
|
return nil
|
|
}
|
|
configForClient.initLegacySessionTicketKeyRLocked()
|
|
if len(configForClient.sessionTicketKeys) != 0 {
|
|
ret := configForClient.sessionTicketKeys
|
|
configForClient.mutex.RUnlock()
|
|
return ret
|
|
}
|
|
configForClient.mutex.RUnlock()
|
|
}
|
|
|
|
c.mutex.RLock()
|
|
defer c.mutex.RUnlock()
|
|
if c.SessionTicketsDisabled {
|
|
return nil
|
|
}
|
|
c.initLegacySessionTicketKeyRLocked()
|
|
if len(c.sessionTicketKeys) != 0 {
|
|
return c.sessionTicketKeys
|
|
}
|
|
// Fast path for the common case where the key is fresh enough.
|
|
if len(c.autoSessionTicketKeys) > 0 && c.time().Sub(c.autoSessionTicketKeys[0].created) < ticketKeyRotation {
|
|
return c.autoSessionTicketKeys
|
|
}
|
|
|
|
// autoSessionTicketKeys are managed by auto-rotation.
|
|
c.mutex.RUnlock()
|
|
defer c.mutex.RLock()
|
|
c.mutex.Lock()
|
|
defer c.mutex.Unlock()
|
|
// Re-check the condition in case it changed since obtaining the new lock.
|
|
if len(c.autoSessionTicketKeys) == 0 || c.time().Sub(c.autoSessionTicketKeys[0].created) >= ticketKeyRotation {
|
|
var newKey [32]byte
|
|
if _, err := io.ReadFull(c.rand(), newKey[:]); err != nil {
|
|
panic(fmt.Sprintf("unable to generate random session ticket key: %v", err))
|
|
}
|
|
valid := make([]ticketKey, 0, len(c.autoSessionTicketKeys)+1)
|
|
valid = append(valid, c.ticketKeyFromBytes(newKey))
|
|
for _, k := range c.autoSessionTicketKeys {
|
|
// While rotating the current key, also remove any expired ones.
|
|
if c.time().Sub(k.created) < ticketKeyLifetime {
|
|
valid = append(valid, k)
|
|
}
|
|
}
|
|
c.autoSessionTicketKeys = valid
|
|
}
|
|
return c.autoSessionTicketKeys
|
|
}
|
|
|
|
// SetSessionTicketKeys updates the session ticket keys for a server.
|
|
//
|
|
// The first key will be used when creating new tickets, while all keys can be
|
|
// used for decrypting tickets. It is safe to call this function while the
|
|
// server is running in order to rotate the session ticket keys. The function
|
|
// will panic if keys is empty.
|
|
//
|
|
// Calling this function will turn off automatic session ticket key rotation.
|
|
//
|
|
// If multiple servers are terminating connections for the same host they should
|
|
// all have the same session ticket keys. If the session ticket keys leaks,
|
|
// previously recorded and future TLS connections using those keys might be
|
|
// compromised.
|
|
func (c *Config) SetSessionTicketKeys(keys [][32]byte) {
|
|
if len(keys) == 0 {
|
|
panic("tls: keys must have at least one key")
|
|
}
|
|
|
|
newKeys := make([]ticketKey, len(keys))
|
|
for i, bytes := range keys {
|
|
newKeys[i] = c.ticketKeyFromBytes(bytes)
|
|
}
|
|
|
|
c.mutex.Lock()
|
|
c.sessionTicketKeys = newKeys
|
|
c.mutex.Unlock()
|
|
}
|
|
|
|
func (c *Config) rand() io.Reader {
|
|
r := c.Rand
|
|
if r == nil {
|
|
return rand.Reader
|
|
}
|
|
return r
|
|
}
|
|
|
|
func (c *Config) time() time.Time {
|
|
t := c.Time
|
|
if t == nil {
|
|
t = time.Now
|
|
}
|
|
return t()
|
|
}
|
|
|
|
func (c *Config) cipherSuites() []uint16 {
|
|
s := c.CipherSuites
|
|
if s == nil {
|
|
s = defaultCipherSuites()
|
|
}
|
|
return s
|
|
}
|
|
|
|
var supportedVersions = []uint16{
|
|
VersionTLS13,
|
|
VersionTLS12,
|
|
VersionTLS11,
|
|
VersionTLS10,
|
|
}
|
|
|
|
func (c *Config) supportedVersions() []uint16 {
|
|
versions := make([]uint16, 0, len(supportedVersions))
|
|
for _, v := range supportedVersions {
|
|
if c != nil && c.MinVersion != 0 && v < c.MinVersion {
|
|
continue
|
|
}
|
|
if c != nil && c.MaxVersion != 0 && v > c.MaxVersion {
|
|
continue
|
|
}
|
|
versions = append(versions, v)
|
|
}
|
|
return versions
|
|
}
|
|
|
|
func (c *Config) maxSupportedVersion() uint16 {
|
|
supportedVersions := c.supportedVersions()
|
|
if len(supportedVersions) == 0 {
|
|
return 0
|
|
}
|
|
return supportedVersions[0]
|
|
}
|
|
|
|
// supportedVersionsFromMax returns a list of supported versions derived from a
|
|
// legacy maximum version value. Note that only versions supported by this
|
|
// library are returned. Any newer peer will use supportedVersions anyway.
|
|
func supportedVersionsFromMax(maxVersion uint16) []uint16 {
|
|
versions := make([]uint16, 0, len(supportedVersions))
|
|
for _, v := range supportedVersions {
|
|
if v > maxVersion {
|
|
continue
|
|
}
|
|
versions = append(versions, v)
|
|
}
|
|
return versions
|
|
}
|
|
|
|
var defaultCurvePreferences = []CurveID{X25519, CurveP256, CurveP384, CurveP521}
|
|
|
|
func (c *Config) curvePreferences() []CurveID {
|
|
if c == nil || len(c.CurvePreferences) == 0 {
|
|
return defaultCurvePreferences
|
|
}
|
|
return c.CurvePreferences
|
|
}
|
|
|
|
func (c *Config) supportsCurve(curve CurveID) bool {
|
|
for _, cc := range c.curvePreferences() {
|
|
if cc == curve {
|
|
return true
|
|
}
|
|
}
|
|
return false
|
|
}
|
|
|
|
// mutualVersion returns the protocol version to use given the advertised
|
|
// versions of the peer. Priority is given to the peer preference order.
|
|
func (c *Config) mutualVersion(peerVersions []uint16) (uint16, bool) {
|
|
supportedVersions := c.supportedVersions()
|
|
for _, peerVersion := range peerVersions {
|
|
for _, v := range supportedVersions {
|
|
if v == peerVersion {
|
|
return v, true
|
|
}
|
|
}
|
|
}
|
|
return 0, false
|
|
}
|
|
|
|
var errNoCertificates = errors.New("tls: no certificates configured")
|
|
|
|
// getCertificate returns the best certificate for the given ClientHelloInfo,
|
|
// defaulting to the first element of c.Certificates.
|
|
func (c *Config) getCertificate(clientHello *ClientHelloInfo) (*Certificate, error) {
|
|
if c.GetCertificate != nil &&
|
|
(len(c.Certificates) == 0 || len(clientHello.ServerName) > 0) {
|
|
cert, err := c.GetCertificate(clientHello)
|
|
if cert != nil || err != nil {
|
|
return cert, err
|
|
}
|
|
}
|
|
|
|
if len(c.Certificates) == 0 {
|
|
return nil, errNoCertificates
|
|
}
|
|
|
|
if len(c.Certificates) == 1 {
|
|
// There's only one choice, so no point doing any work.
|
|
return &c.Certificates[0], nil
|
|
}
|
|
|
|
if c.NameToCertificate != nil {
|
|
name := strings.ToLower(clientHello.ServerName)
|
|
if cert, ok := c.NameToCertificate[name]; ok {
|
|
return cert, nil
|
|
}
|
|
if len(name) > 0 {
|
|
labels := strings.Split(name, ".")
|
|
labels[0] = "*"
|
|
wildcardName := strings.Join(labels, ".")
|
|
if cert, ok := c.NameToCertificate[wildcardName]; ok {
|
|
return cert, nil
|
|
}
|
|
}
|
|
}
|
|
|
|
for _, cert := range c.Certificates {
|
|
if err := clientHello.SupportsCertificate(&cert); err == nil {
|
|
return &cert, nil
|
|
}
|
|
}
|
|
|
|
// If nothing matches, return the first certificate.
|
|
return &c.Certificates[0], nil
|
|
}
|
|
|
|
// SupportsCertificate returns nil if the provided certificate is supported by
|
|
// the client that sent the ClientHello. Otherwise, it returns an error
|
|
// describing the reason for the incompatibility.
|
|
//
|
|
// If this ClientHelloInfo was passed to a GetConfigForClient or GetCertificate
|
|
// callback, this method will take into account the associated Config. Note that
|
|
// if GetConfigForClient returns a different Config, the change can't be
|
|
// accounted for by this method.
|
|
//
|
|
// This function will call x509.ParseCertificate unless c.Leaf is set, which can
|
|
// incur a significant performance cost.
|
|
func (chi *ClientHelloInfo) SupportsCertificate(c *Certificate) error {
|
|
// Note we don't currently support certificate_authorities nor
|
|
// signature_algorithms_cert, and don't check the algorithms of the
|
|
// signatures on the chain (which anyway are a SHOULD, see RFC 8446,
|
|
// Section 4.4.2.2).
|
|
|
|
config := chi.config
|
|
if config == nil {
|
|
config = &Config{}
|
|
}
|
|
vers, ok := config.mutualVersion(chi.SupportedVersions)
|
|
if !ok {
|
|
return errors.New("no mutually supported protocol versions")
|
|
}
|
|
|
|
// If the client specified the name they are trying to connect to, the
|
|
// certificate needs to be valid for it.
|
|
if chi.ServerName != "" {
|
|
x509Cert, err := c.leaf()
|
|
if err != nil {
|
|
return fmt.Errorf("failed to parse certificate: %w", err)
|
|
}
|
|
if err := x509Cert.VerifyHostname(chi.ServerName); err != nil {
|
|
return fmt.Errorf("certificate is not valid for requested server name: %w", err)
|
|
}
|
|
}
|
|
|
|
// supportsRSAFallback returns nil if the certificate and connection support
|
|
// the static RSA key exchange, and unsupported otherwise. The logic for
|
|
// supporting static RSA is completely disjoint from the logic for
|
|
// supporting signed key exchanges, so we just check it as a fallback.
|
|
supportsRSAFallback := func(unsupported error) error {
|
|
// TLS 1.3 dropped support for the static RSA key exchange.
|
|
if vers == VersionTLS13 {
|
|
return unsupported
|
|
}
|
|
// The static RSA key exchange works by decrypting a challenge with the
|
|
// RSA private key, not by signing, so check the PrivateKey implements
|
|
// crypto.Decrypter, like *rsa.PrivateKey does.
|
|
if priv, ok := c.PrivateKey.(crypto.Decrypter); ok {
|
|
if _, ok := priv.Public().(*rsa.PublicKey); !ok {
|
|
return unsupported
|
|
}
|
|
} else {
|
|
return unsupported
|
|
}
|
|
// Finally, there needs to be a mutual cipher suite that uses the static
|
|
// RSA key exchange instead of ECDHE.
|
|
rsaCipherSuite := selectCipherSuite(chi.CipherSuites, config.cipherSuites(), func(c *cipherSuite) bool {
|
|
if c.flags&suiteECDHE != 0 {
|
|
return false
|
|
}
|
|
if vers < VersionTLS12 && c.flags&suiteTLS12 != 0 {
|
|
return false
|
|
}
|
|
return true
|
|
})
|
|
if rsaCipherSuite == nil {
|
|
return unsupported
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// If the client sent the signature_algorithms extension, ensure it supports
|
|
// schemes we can use with this certificate and TLS version.
|
|
if len(chi.SignatureSchemes) > 0 {
|
|
if _, err := selectSignatureScheme(vers, c, chi.SignatureSchemes); err != nil {
|
|
return supportsRSAFallback(err)
|
|
}
|
|
}
|
|
|
|
// In TLS 1.3 we are done because supported_groups is only relevant to the
|
|
// ECDHE computation, point format negotiation is removed, cipher suites are
|
|
// only relevant to the AEAD choice, and static RSA does not exist.
|
|
if vers == VersionTLS13 {
|
|
return nil
|
|
}
|
|
|
|
// The only signed key exchange we support is ECDHE.
|
|
if !supportsECDHE(config, chi.SupportedCurves, chi.SupportedPoints) {
|
|
return supportsRSAFallback(errors.New("client doesn't support ECDHE, can only use legacy RSA key exchange"))
|
|
}
|
|
|
|
var ecdsaCipherSuite bool
|
|
if priv, ok := c.PrivateKey.(crypto.Signer); ok {
|
|
switch pub := priv.Public().(type) {
|
|
case *ecdsa.PublicKey:
|
|
var curve CurveID
|
|
switch pub.Curve {
|
|
case elliptic.P256():
|
|
curve = CurveP256
|
|
case elliptic.P384():
|
|
curve = CurveP384
|
|
case elliptic.P521():
|
|
curve = CurveP521
|
|
default:
|
|
return supportsRSAFallback(unsupportedCertificateError(c))
|
|
}
|
|
var curveOk bool
|
|
for _, c := range chi.SupportedCurves {
|
|
if c == curve && config.supportsCurve(c) {
|
|
curveOk = true
|
|
break
|
|
}
|
|
}
|
|
if !curveOk {
|
|
return errors.New("client doesn't support certificate curve")
|
|
}
|
|
ecdsaCipherSuite = true
|
|
case ed25519.PublicKey:
|
|
if vers < VersionTLS12 || len(chi.SignatureSchemes) == 0 {
|
|
return errors.New("connection doesn't support Ed25519")
|
|
}
|
|
ecdsaCipherSuite = true
|
|
case *rsa.PublicKey:
|
|
default:
|
|
return supportsRSAFallback(unsupportedCertificateError(c))
|
|
}
|
|
} else {
|
|
return supportsRSAFallback(unsupportedCertificateError(c))
|
|
}
|
|
|
|
// Make sure that there is a mutually supported cipher suite that works with
|
|
// this certificate. Cipher suite selection will then apply the logic in
|
|
// reverse to pick it. See also serverHandshakeState.cipherSuiteOk.
|
|
cipherSuite := selectCipherSuite(chi.CipherSuites, config.cipherSuites(), func(c *cipherSuite) bool {
|
|
if c.flags&suiteECDHE == 0 {
|
|
return false
|
|
}
|
|
if c.flags&suiteECSign != 0 {
|
|
if !ecdsaCipherSuite {
|
|
return false
|
|
}
|
|
} else {
|
|
if ecdsaCipherSuite {
|
|
return false
|
|
}
|
|
}
|
|
if vers < VersionTLS12 && c.flags&suiteTLS12 != 0 {
|
|
return false
|
|
}
|
|
return true
|
|
})
|
|
if cipherSuite == nil {
|
|
return supportsRSAFallback(errors.New("client doesn't support any cipher suites compatible with the certificate"))
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
// SupportsCertificate returns nil if the provided certificate is supported by
|
|
// the server that sent the CertificateRequest. Otherwise, it returns an error
|
|
// describing the reason for the incompatibility.
|
|
func (cri *CertificateRequestInfo) SupportsCertificate(c *Certificate) error {
|
|
if _, err := selectSignatureScheme(cri.Version, c, cri.SignatureSchemes); err != nil {
|
|
return err
|
|
}
|
|
|
|
if len(cri.AcceptableCAs) == 0 {
|
|
return nil
|
|
}
|
|
|
|
for j, cert := range c.Certificate {
|
|
x509Cert := c.Leaf
|
|
// Parse the certificate if this isn't the leaf node, or if
|
|
// chain.Leaf was nil.
|
|
if j != 0 || x509Cert == nil {
|
|
var err error
|
|
if x509Cert, err = x509.ParseCertificate(cert); err != nil {
|
|
return fmt.Errorf("failed to parse certificate #%d in the chain: %w", j, err)
|
|
}
|
|
}
|
|
|
|
for _, ca := range cri.AcceptableCAs {
|
|
if bytes.Equal(x509Cert.RawIssuer, ca) {
|
|
return nil
|
|
}
|
|
}
|
|
}
|
|
return errors.New("chain is not signed by an acceptable CA")
|
|
}
|
|
|
|
// BuildNameToCertificate parses c.Certificates and builds c.NameToCertificate
|
|
// from the CommonName and SubjectAlternateName fields of each of the leaf
|
|
// certificates.
|
|
//
|
|
// Deprecated: NameToCertificate only allows associating a single certificate
|
|
// with a given name. Leave that field nil to let the library select the first
|
|
// compatible chain from Certificates.
|
|
func (c *Config) BuildNameToCertificate() {
|
|
c.NameToCertificate = make(map[string]*Certificate)
|
|
for i := range c.Certificates {
|
|
cert := &c.Certificates[i]
|
|
x509Cert, err := cert.leaf()
|
|
if err != nil {
|
|
continue
|
|
}
|
|
// If SANs are *not* present, some clients will consider the certificate
|
|
// valid for the name in the Common Name.
|
|
if x509Cert.Subject.CommonName != "" && len(x509Cert.DNSNames) == 0 {
|
|
c.NameToCertificate[x509Cert.Subject.CommonName] = cert
|
|
}
|
|
for _, san := range x509Cert.DNSNames {
|
|
c.NameToCertificate[san] = cert
|
|
}
|
|
}
|
|
}
|
|
|
|
const (
|
|
keyLogLabelTLS12 = "CLIENT_RANDOM"
|
|
keyLogLabelClientHandshake = "CLIENT_HANDSHAKE_TRAFFIC_SECRET"
|
|
keyLogLabelServerHandshake = "SERVER_HANDSHAKE_TRAFFIC_SECRET"
|
|
keyLogLabelClientTraffic = "CLIENT_TRAFFIC_SECRET_0"
|
|
keyLogLabelServerTraffic = "SERVER_TRAFFIC_SECRET_0"
|
|
)
|
|
|
|
func (c *Config) writeKeyLog(label string, clientRandom, secret []byte) error {
|
|
if c.KeyLogWriter == nil {
|
|
return nil
|
|
}
|
|
|
|
logLine := []byte(fmt.Sprintf("%s %x %x\n", label, clientRandom, secret))
|
|
|
|
writerMutex.Lock()
|
|
_, err := c.KeyLogWriter.Write(logLine)
|
|
writerMutex.Unlock()
|
|
|
|
return err
|
|
}
|
|
|
|
// writerMutex protects all KeyLogWriters globally. It is rarely enabled,
|
|
// and is only for debugging, so a global mutex saves space.
|
|
var writerMutex sync.Mutex
|
|
|
|
// A Certificate is a chain of one or more certificates, leaf first.
|
|
type Certificate struct {
|
|
Certificate [][]byte
|
|
// PrivateKey contains the private key corresponding to the public key in
|
|
// Leaf. This must implement crypto.Signer with an RSA, ECDSA or Ed25519 PublicKey.
|
|
// For a server up to TLS 1.2, it can also implement crypto.Decrypter with
|
|
// an RSA PublicKey.
|
|
PrivateKey crypto.PrivateKey
|
|
// SupportedSignatureAlgorithms is an optional list restricting what
|
|
// signature algorithms the PrivateKey can be used for.
|
|
SupportedSignatureAlgorithms []SignatureScheme
|
|
// OCSPStaple contains an optional OCSP response which will be served
|
|
// to clients that request it.
|
|
OCSPStaple []byte
|
|
// SignedCertificateTimestamps contains an optional list of Signed
|
|
// Certificate Timestamps which will be served to clients that request it.
|
|
SignedCertificateTimestamps [][]byte
|
|
// Leaf is the parsed form of the leaf certificate, which may be initialized
|
|
// using x509.ParseCertificate to reduce per-handshake processing. If nil,
|
|
// the leaf certificate will be parsed as needed.
|
|
Leaf *x509.Certificate
|
|
}
|
|
|
|
// leaf returns the parsed leaf certificate, either from c.Leaf or by parsing
|
|
// the corresponding c.Certificate[0].
|
|
func (c *Certificate) leaf() (*x509.Certificate, error) {
|
|
if c.Leaf != nil {
|
|
return c.Leaf, nil
|
|
}
|
|
return x509.ParseCertificate(c.Certificate[0])
|
|
}
|
|
|
|
type handshakeMessage interface {
|
|
marshal() []byte
|
|
unmarshal([]byte) bool
|
|
}
|
|
|
|
// lruSessionCache is a ClientSessionCache implementation that uses an LRU
|
|
// caching strategy.
|
|
type lruSessionCache struct {
|
|
sync.Mutex
|
|
|
|
m map[string]*list.Element
|
|
q *list.List
|
|
capacity int
|
|
}
|
|
|
|
type lruSessionCacheEntry struct {
|
|
sessionKey string
|
|
state *ClientSessionState
|
|
}
|
|
|
|
// NewLRUClientSessionCache returns a ClientSessionCache with the given
|
|
// capacity that uses an LRU strategy. If capacity is < 1, a default capacity
|
|
// is used instead.
|
|
func NewLRUClientSessionCache(capacity int) ClientSessionCache {
|
|
const defaultSessionCacheCapacity = 64
|
|
|
|
if capacity < 1 {
|
|
capacity = defaultSessionCacheCapacity
|
|
}
|
|
return &lruSessionCache{
|
|
m: make(map[string]*list.Element),
|
|
q: list.New(),
|
|
capacity: capacity,
|
|
}
|
|
}
|
|
|
|
// Put adds the provided (sessionKey, cs) pair to the cache. If cs is nil, the entry
|
|
// corresponding to sessionKey is removed from the cache instead.
|
|
func (c *lruSessionCache) Put(sessionKey string, cs *ClientSessionState) {
|
|
c.Lock()
|
|
defer c.Unlock()
|
|
|
|
if elem, ok := c.m[sessionKey]; ok {
|
|
if cs == nil {
|
|
c.q.Remove(elem)
|
|
delete(c.m, sessionKey)
|
|
} else {
|
|
entry := elem.Value.(*lruSessionCacheEntry)
|
|
entry.state = cs
|
|
c.q.MoveToFront(elem)
|
|
}
|
|
return
|
|
}
|
|
|
|
if c.q.Len() < c.capacity {
|
|
entry := &lruSessionCacheEntry{sessionKey, cs}
|
|
c.m[sessionKey] = c.q.PushFront(entry)
|
|
return
|
|
}
|
|
|
|
elem := c.q.Back()
|
|
entry := elem.Value.(*lruSessionCacheEntry)
|
|
delete(c.m, entry.sessionKey)
|
|
entry.sessionKey = sessionKey
|
|
entry.state = cs
|
|
c.q.MoveToFront(elem)
|
|
c.m[sessionKey] = elem
|
|
}
|
|
|
|
// Get returns the ClientSessionState value associated with a given key. It
|
|
// returns (nil, false) if no value is found.
|
|
func (c *lruSessionCache) Get(sessionKey string) (*ClientSessionState, bool) {
|
|
c.Lock()
|
|
defer c.Unlock()
|
|
|
|
if elem, ok := c.m[sessionKey]; ok {
|
|
c.q.MoveToFront(elem)
|
|
return elem.Value.(*lruSessionCacheEntry).state, true
|
|
}
|
|
return nil, false
|
|
}
|
|
|
|
var emptyConfig Config
|
|
|
|
func defaultConfig() *Config {
|
|
return &emptyConfig
|
|
}
|
|
|
|
var (
|
|
once sync.Once
|
|
varDefaultCipherSuites []uint16
|
|
varDefaultCipherSuitesTLS13 []uint16
|
|
)
|
|
|
|
func defaultCipherSuites() []uint16 {
|
|
once.Do(initDefaultCipherSuites)
|
|
return varDefaultCipherSuites
|
|
}
|
|
|
|
func defaultCipherSuitesTLS13() []uint16 {
|
|
once.Do(initDefaultCipherSuites)
|
|
return varDefaultCipherSuitesTLS13
|
|
}
|
|
|
|
var (
|
|
hasGCMAsmAMD64 = cpu.X86.HasAES && cpu.X86.HasPCLMULQDQ
|
|
hasGCMAsmARM64 = cpu.ARM64.HasAES && cpu.ARM64.HasPMULL
|
|
// Keep in sync with crypto/aes/cipher_s390x.go.
|
|
hasGCMAsmS390X = cpu.S390X.HasAES && cpu.S390X.HasAESCBC && cpu.S390X.HasAESCTR && (cpu.S390X.HasGHASH || cpu.S390X.HasAESGCM)
|
|
|
|
hasAESGCMHardwareSupport = runtime.GOARCH == "amd64" && hasGCMAsmAMD64 ||
|
|
runtime.GOARCH == "arm64" && hasGCMAsmARM64 ||
|
|
runtime.GOARCH == "s390x" && hasGCMAsmS390X
|
|
)
|
|
|
|
func initDefaultCipherSuites() {
|
|
var topCipherSuites []uint16
|
|
|
|
if hasAESGCMHardwareSupport {
|
|
// If AES-GCM hardware is provided then prioritise AES-GCM
|
|
// cipher suites.
|
|
topCipherSuites = []uint16{
|
|
TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256,
|
|
TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384,
|
|
TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256,
|
|
TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384,
|
|
TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305,
|
|
TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305,
|
|
}
|
|
varDefaultCipherSuitesTLS13 = []uint16{
|
|
TLS_AES_128_GCM_SHA256,
|
|
TLS_CHACHA20_POLY1305_SHA256,
|
|
TLS_AES_256_GCM_SHA384,
|
|
}
|
|
} else {
|
|
// Without AES-GCM hardware, we put the ChaCha20-Poly1305
|
|
// cipher suites first.
|
|
topCipherSuites = []uint16{
|
|
TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305,
|
|
TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305,
|
|
TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256,
|
|
TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384,
|
|
TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256,
|
|
TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384,
|
|
}
|
|
varDefaultCipherSuitesTLS13 = []uint16{
|
|
TLS_CHACHA20_POLY1305_SHA256,
|
|
TLS_AES_128_GCM_SHA256,
|
|
TLS_AES_256_GCM_SHA384,
|
|
}
|
|
}
|
|
|
|
varDefaultCipherSuites = make([]uint16, 0, len(cipherSuites))
|
|
varDefaultCipherSuites = append(varDefaultCipherSuites, topCipherSuites...)
|
|
|
|
NextCipherSuite:
|
|
for _, suite := range cipherSuites {
|
|
if suite.flags&suiteDefaultOff != 0 {
|
|
continue
|
|
}
|
|
for _, existing := range varDefaultCipherSuites {
|
|
if existing == suite.id {
|
|
continue NextCipherSuite
|
|
}
|
|
}
|
|
varDefaultCipherSuites = append(varDefaultCipherSuites, suite.id)
|
|
}
|
|
}
|
|
|
|
func unexpectedMessageError(wanted, got interface{}) error {
|
|
return fmt.Errorf("tls: received unexpected handshake message of type %T when waiting for %T", got, wanted)
|
|
}
|
|
|
|
func isSupportedSignatureAlgorithm(sigAlg SignatureScheme, supportedSignatureAlgorithms []SignatureScheme) bool {
|
|
for _, s := range supportedSignatureAlgorithms {
|
|
if s == sigAlg {
|
|
return true
|
|
}
|
|
}
|
|
return false
|
|
}
|
|
|
|
var aesgcmCiphers = map[uint16]bool{
|
|
// 1.2
|
|
TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256: true,
|
|
TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384: true,
|
|
TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256: true,
|
|
TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384: true,
|
|
// 1.3
|
|
TLS_AES_128_GCM_SHA256: true,
|
|
TLS_AES_256_GCM_SHA384: true,
|
|
}
|
|
|
|
var nonAESGCMAEADCiphers = map[uint16]bool{
|
|
// 1.2
|
|
TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305: true,
|
|
TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305: true,
|
|
// 1.3
|
|
TLS_CHACHA20_POLY1305_SHA256: true,
|
|
}
|
|
|
|
// aesgcmPreferred returns whether the first valid cipher in the preference list
|
|
// is an AES-GCM cipher, implying the peer has hardware support for it.
|
|
func aesgcmPreferred(ciphers []uint16) bool {
|
|
for _, cID := range ciphers {
|
|
c := cipherSuiteByID(cID)
|
|
if c == nil {
|
|
c13 := cipherSuiteTLS13ByID(cID)
|
|
if c13 == nil {
|
|
continue
|
|
}
|
|
return aesgcmCiphers[cID]
|
|
}
|
|
return aesgcmCiphers[cID]
|
|
}
|
|
return false
|
|
}
|
|
|
|
// deprioritizeAES reorders cipher preference lists by rearranging
|
|
// adjacent AEAD ciphers such that AES-GCM based ciphers are moved
|
|
// after other AEAD ciphers. It returns a fresh slice.
|
|
func deprioritizeAES(ciphers []uint16) []uint16 {
|
|
reordered := make([]uint16, len(ciphers))
|
|
copy(reordered, ciphers)
|
|
sort.SliceStable(reordered, func(i, j int) bool {
|
|
return nonAESGCMAEADCiphers[reordered[i]] && aesgcmCiphers[reordered[j]]
|
|
})
|
|
return reordered
|
|
}
|